LLVM 22.0.0git
VPlanRecipes.cpp
Go to the documentation of this file.
1//===- VPlanRecipes.cpp - Implementations for VPlan recipes ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file contains implementations for different VPlan recipes.
11///
12//===----------------------------------------------------------------------===//
13
15#include "VPlan.h"
16#include "VPlanAnalysis.h"
17#include "VPlanHelpers.h"
18#include "VPlanPatternMatch.h"
19#include "VPlanUtils.h"
20#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/Twine.h"
26#include "llvm/IR/BasicBlock.h"
27#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/Instruction.h"
30#include "llvm/IR/Intrinsics.h"
31#include "llvm/IR/Type.h"
32#include "llvm/IR/Value.h"
35#include "llvm/Support/Debug.h"
40#include <cassert>
41
42using namespace llvm;
43
45
46#define LV_NAME "loop-vectorize"
47#define DEBUG_TYPE LV_NAME
48
50 switch (getVPDefID()) {
51 case VPExpressionSC:
52 return cast<VPExpressionRecipe>(this)->mayReadOrWriteMemory();
53 case VPInstructionSC:
54 return cast<VPInstruction>(this)->opcodeMayReadOrWriteFromMemory();
55 case VPInterleaveEVLSC:
56 case VPInterleaveSC:
57 return cast<VPInterleaveBase>(this)->getNumStoreOperands() > 0;
58 case VPWidenStoreEVLSC:
59 case VPWidenStoreSC:
60 return true;
61 case VPReplicateSC:
62 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
63 ->mayWriteToMemory();
64 case VPWidenCallSC:
65 return !cast<VPWidenCallRecipe>(this)
66 ->getCalledScalarFunction()
67 ->onlyReadsMemory();
68 case VPWidenIntrinsicSC:
69 return cast<VPWidenIntrinsicRecipe>(this)->mayWriteToMemory();
70 case VPCanonicalIVPHISC:
71 case VPBranchOnMaskSC:
72 case VPFirstOrderRecurrencePHISC:
73 case VPReductionPHISC:
74 case VPScalarIVStepsSC:
75 case VPPredInstPHISC:
76 return false;
77 case VPBlendSC:
78 case VPReductionEVLSC:
79 case VPReductionSC:
80 case VPVectorPointerSC:
81 case VPWidenCanonicalIVSC:
82 case VPWidenCastSC:
83 case VPWidenGEPSC:
84 case VPWidenIntOrFpInductionSC:
85 case VPWidenLoadEVLSC:
86 case VPWidenLoadSC:
87 case VPWidenPHISC:
88 case VPWidenSC:
89 case VPWidenSelectSC: {
90 const Instruction *I =
91 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
92 (void)I;
93 assert((!I || !I->mayWriteToMemory()) &&
94 "underlying instruction may write to memory");
95 return false;
96 }
97 default:
98 return true;
99 }
100}
101
103 switch (getVPDefID()) {
104 case VPExpressionSC:
105 return cast<VPExpressionRecipe>(this)->mayReadOrWriteMemory();
106 case VPInstructionSC:
107 return cast<VPInstruction>(this)->opcodeMayReadOrWriteFromMemory();
108 case VPWidenLoadEVLSC:
109 case VPWidenLoadSC:
110 return true;
111 case VPReplicateSC:
112 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
113 ->mayReadFromMemory();
114 case VPWidenCallSC:
115 return !cast<VPWidenCallRecipe>(this)
116 ->getCalledScalarFunction()
117 ->onlyWritesMemory();
118 case VPWidenIntrinsicSC:
119 return cast<VPWidenIntrinsicRecipe>(this)->mayReadFromMemory();
120 case VPBranchOnMaskSC:
121 case VPFirstOrderRecurrencePHISC:
122 case VPPredInstPHISC:
123 case VPScalarIVStepsSC:
124 case VPWidenStoreEVLSC:
125 case VPWidenStoreSC:
126 return false;
127 case VPBlendSC:
128 case VPReductionEVLSC:
129 case VPReductionSC:
130 case VPVectorPointerSC:
131 case VPWidenCanonicalIVSC:
132 case VPWidenCastSC:
133 case VPWidenGEPSC:
134 case VPWidenIntOrFpInductionSC:
135 case VPWidenPHISC:
136 case VPWidenSC:
137 case VPWidenSelectSC: {
138 const Instruction *I =
139 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
140 (void)I;
141 assert((!I || !I->mayReadFromMemory()) &&
142 "underlying instruction may read from memory");
143 return false;
144 }
145 default:
146 // FIXME: Return false if the recipe represents an interleaved store.
147 return true;
148 }
149}
150
152 switch (getVPDefID()) {
153 case VPExpressionSC:
154 return cast<VPExpressionRecipe>(this)->mayHaveSideEffects();
155 case VPDerivedIVSC:
156 case VPFirstOrderRecurrencePHISC:
157 case VPPredInstPHISC:
158 case VPVectorEndPointerSC:
159 return false;
160 case VPInstructionSC:
161 return mayWriteToMemory();
162 case VPWidenCallSC: {
163 Function *Fn = cast<VPWidenCallRecipe>(this)->getCalledScalarFunction();
164 return mayWriteToMemory() || !Fn->doesNotThrow() || !Fn->willReturn();
165 }
166 case VPWidenIntrinsicSC:
167 return cast<VPWidenIntrinsicRecipe>(this)->mayHaveSideEffects();
168 case VPBlendSC:
169 case VPReductionEVLSC:
170 case VPReductionSC:
171 case VPScalarIVStepsSC:
172 case VPVectorPointerSC:
173 case VPWidenCanonicalIVSC:
174 case VPWidenCastSC:
175 case VPWidenGEPSC:
176 case VPWidenIntOrFpInductionSC:
177 case VPWidenPHISC:
178 case VPWidenPointerInductionSC:
179 case VPWidenSC:
180 case VPWidenSelectSC: {
181 const Instruction *I =
182 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
183 (void)I;
184 assert((!I || !I->mayHaveSideEffects()) &&
185 "underlying instruction has side-effects");
186 return false;
187 }
188 case VPInterleaveEVLSC:
189 case VPInterleaveSC:
190 return mayWriteToMemory();
191 case VPWidenLoadEVLSC:
192 case VPWidenLoadSC:
193 case VPWidenStoreEVLSC:
194 case VPWidenStoreSC:
195 assert(
196 cast<VPWidenMemoryRecipe>(this)->getIngredient().mayHaveSideEffects() ==
198 "mayHaveSideffects result for ingredient differs from this "
199 "implementation");
200 return mayWriteToMemory();
201 case VPReplicateSC: {
202 auto *R = cast<VPReplicateRecipe>(this);
203 return R->getUnderlyingInstr()->mayHaveSideEffects();
204 }
205 default:
206 return true;
207 }
208}
209
211 assert(!Parent && "Recipe already in some VPBasicBlock");
212 assert(InsertPos->getParent() &&
213 "Insertion position not in any VPBasicBlock");
214 InsertPos->getParent()->insert(this, InsertPos->getIterator());
215}
216
217void VPRecipeBase::insertBefore(VPBasicBlock &BB,
219 assert(!Parent && "Recipe already in some VPBasicBlock");
220 assert(I == BB.end() || I->getParent() == &BB);
221 BB.insert(this, I);
222}
223
225 assert(!Parent && "Recipe already in some VPBasicBlock");
226 assert(InsertPos->getParent() &&
227 "Insertion position not in any VPBasicBlock");
228 InsertPos->getParent()->insert(this, std::next(InsertPos->getIterator()));
229}
230
232 assert(getParent() && "Recipe not in any VPBasicBlock");
234 Parent = nullptr;
235}
236
238 assert(getParent() && "Recipe not in any VPBasicBlock");
240}
241
244 insertAfter(InsertPos);
245}
246
252
254 // Get the underlying instruction for the recipe, if there is one. It is used
255 // to
256 // * decide if cost computation should be skipped for this recipe,
257 // * apply forced target instruction cost.
258 Instruction *UI = nullptr;
259 if (auto *S = dyn_cast<VPSingleDefRecipe>(this))
260 UI = dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
261 else if (auto *IG = dyn_cast<VPInterleaveBase>(this))
262 UI = IG->getInsertPos();
263 else if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(this))
264 UI = &WidenMem->getIngredient();
265
266 InstructionCost RecipeCost;
267 if (UI && Ctx.skipCostComputation(UI, VF.isVector())) {
268 RecipeCost = 0;
269 } else {
270 RecipeCost = computeCost(VF, Ctx);
271 if (UI && ForceTargetInstructionCost.getNumOccurrences() > 0 &&
272 RecipeCost.isValid())
274 }
275
276 LLVM_DEBUG({
277 dbgs() << "Cost of " << RecipeCost << " for VF " << VF << ": ";
278 dump();
279 });
280 return RecipeCost;
281}
282
284 VPCostContext &Ctx) const {
285 llvm_unreachable("subclasses should implement computeCost");
286}
287
289 return (getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC) ||
291}
292
294 auto *VPI = dyn_cast<VPInstruction>(this);
295 return VPI && Instruction::isCast(VPI->getOpcode());
296}
297
300 VPCostContext &Ctx) const {
301 std::optional<unsigned> Opcode;
302 VPValue *Op = getOperand(0);
303 VPRecipeBase *OpR = Op->getDefiningRecipe();
304
305 // If the partial reduction is predicated, a select will be operand 0
306 using namespace llvm::VPlanPatternMatch;
308 OpR = Op->getDefiningRecipe();
309 }
310
311 Type *InputTypeA = nullptr, *InputTypeB = nullptr;
313 ExtBType = TTI::PR_None;
314
315 auto GetExtendKind = [](VPRecipeBase *R) {
316 if (!R)
317 return TTI::PR_None;
318 auto *WidenCastR = dyn_cast<VPWidenCastRecipe>(R);
319 if (!WidenCastR)
320 return TTI::PR_None;
321 if (WidenCastR->getOpcode() == Instruction::CastOps::ZExt)
322 return TTI::PR_ZeroExtend;
323 if (WidenCastR->getOpcode() == Instruction::CastOps::SExt)
324 return TTI::PR_SignExtend;
325 return TTI::PR_None;
326 };
327
328 // Pick out opcode, type/ext information and use sub side effects from a widen
329 // recipe.
330 auto HandleWiden = [&](VPWidenRecipe *Widen) {
332 Widen = dyn_cast<VPWidenRecipe>(Op->getDefiningRecipe());
333 }
334 Opcode = Widen->getOpcode();
335 VPRecipeBase *ExtAR = Widen->getOperand(0)->getDefiningRecipe();
336 VPRecipeBase *ExtBR = Widen->getOperand(1)->getDefiningRecipe();
337 InputTypeA = Ctx.Types.inferScalarType(ExtAR ? ExtAR->getOperand(0)
338 : Widen->getOperand(0));
339 InputTypeB = Ctx.Types.inferScalarType(ExtBR ? ExtBR->getOperand(0)
340 : Widen->getOperand(1));
341 ExtAType = GetExtendKind(ExtAR);
342 ExtBType = GetExtendKind(ExtBR);
343 };
344
345 if (isa<VPWidenCastRecipe>(OpR)) {
346 InputTypeA = Ctx.Types.inferScalarType(OpR->getOperand(0));
347 ExtAType = GetExtendKind(OpR);
348 } else if (isa<VPReductionPHIRecipe>(OpR)) {
349 auto RedPhiOp1R = getOperand(1)->getDefiningRecipe();
350 if (isa<VPWidenCastRecipe>(RedPhiOp1R)) {
351 InputTypeA = Ctx.Types.inferScalarType(RedPhiOp1R->getOperand(0));
352 ExtAType = GetExtendKind(RedPhiOp1R);
353 } else if (auto Widen = dyn_cast<VPWidenRecipe>(RedPhiOp1R))
354 HandleWiden(Widen);
355 } else if (auto Widen = dyn_cast<VPWidenRecipe>(OpR)) {
356 HandleWiden(Widen);
357 } else if (auto Reduction = dyn_cast<VPPartialReductionRecipe>(OpR)) {
358 return Reduction->computeCost(VF, Ctx);
359 }
360 auto *PhiType = Ctx.Types.inferScalarType(getOperand(1));
361 return Ctx.TTI.getPartialReductionCost(getOpcode(), InputTypeA, InputTypeB,
362 PhiType, VF, ExtAType, ExtBType,
363 Opcode, Ctx.CostKind);
364}
365
367 auto &Builder = State.Builder;
368
369 assert(getOpcode() == Instruction::Add &&
370 "Unhandled partial reduction opcode");
371
372 Value *BinOpVal = State.get(getOperand(1));
373 Value *PhiVal = State.get(getOperand(0));
374 assert(PhiVal && BinOpVal && "Phi and Mul must be set");
375
376 Type *RetTy = PhiVal->getType();
377
378 CallInst *V = Builder.CreateIntrinsic(
379 RetTy, Intrinsic::experimental_vector_partial_reduce_add,
380 {PhiVal, BinOpVal}, nullptr, "partial.reduce");
381
382 State.set(this, V);
383}
384
385#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
387 VPSlotTracker &SlotTracker) const {
388 O << Indent << "PARTIAL-REDUCE ";
390 O << " = " << Instruction::getOpcodeName(getOpcode()) << " ";
392}
393#endif
394
396 assert(OpType == Other.OpType && "OpType must match");
397 switch (OpType) {
398 case OperationType::OverflowingBinOp:
399 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
400 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
401 break;
402 case OperationType::Trunc:
403 TruncFlags.HasNUW &= Other.TruncFlags.HasNUW;
404 TruncFlags.HasNSW &= Other.TruncFlags.HasNSW;
405 break;
406 case OperationType::DisjointOp:
407 DisjointFlags.IsDisjoint &= Other.DisjointFlags.IsDisjoint;
408 break;
409 case OperationType::PossiblyExactOp:
410 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
411 break;
412 case OperationType::GEPOp:
413 GEPFlags &= Other.GEPFlags;
414 break;
415 case OperationType::FPMathOp:
416 FMFs.NoNaNs &= Other.FMFs.NoNaNs;
417 FMFs.NoInfs &= Other.FMFs.NoInfs;
418 break;
419 case OperationType::NonNegOp:
420 NonNegFlags.NonNeg &= Other.NonNegFlags.NonNeg;
421 break;
422 case OperationType::Cmp:
423 assert(CmpPredicate == Other.CmpPredicate && "Cannot drop CmpPredicate");
424 break;
425 case OperationType::Other:
426 assert(AllFlags == Other.AllFlags && "Cannot drop other flags");
427 break;
428 }
429}
430
432 assert(OpType == OperationType::FPMathOp &&
433 "recipe doesn't have fast math flags");
434 FastMathFlags Res;
435 Res.setAllowReassoc(FMFs.AllowReassoc);
436 Res.setNoNaNs(FMFs.NoNaNs);
437 Res.setNoInfs(FMFs.NoInfs);
438 Res.setNoSignedZeros(FMFs.NoSignedZeros);
439 Res.setAllowReciprocal(FMFs.AllowReciprocal);
440 Res.setAllowContract(FMFs.AllowContract);
441 Res.setApproxFunc(FMFs.ApproxFunc);
442 return Res;
443}
444
445#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
447#endif
448
449template <unsigned PartOpIdx>
450VPValue *
452 if (U.getNumOperands() == PartOpIdx + 1)
453 return U.getOperand(PartOpIdx);
454 return nullptr;
455}
456
457template <unsigned PartOpIdx>
459 if (auto *UnrollPartOp = getUnrollPartOperand(U))
460 return cast<ConstantInt>(UnrollPartOp->getLiveInIRValue())->getZExtValue();
461 return 0;
462}
463
464namespace llvm {
465template class VPUnrollPartAccessor<1>;
466template class VPUnrollPartAccessor<2>;
467template class VPUnrollPartAccessor<3>;
468}
469
471 const VPIRFlags &Flags, DebugLoc DL,
472 const Twine &Name)
473 : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, Flags, DL),
474 VPIRMetadata(), Opcode(Opcode), Name(Name.str()) {
476 "Set flags not supported for the provided opcode");
477 assert((getNumOperandsForOpcode(Opcode) == -1u ||
478 getNumOperandsForOpcode(Opcode) == getNumOperands()) &&
479 "number of operands does not match opcode");
480}
481
482#ifndef NDEBUG
483unsigned VPInstruction::getNumOperandsForOpcode(unsigned Opcode) {
484 if (Instruction::isUnaryOp(Opcode) || Instruction::isCast(Opcode))
485 return 1;
486
487 if (Instruction::isBinaryOp(Opcode))
488 return 2;
489
490 switch (Opcode) {
493 return 0;
494 case Instruction::Alloca:
495 case Instruction::ExtractValue:
496 case Instruction::Freeze:
497 case Instruction::Load:
509 return 1;
510 case Instruction::ICmp:
511 case Instruction::FCmp:
512 case Instruction::Store:
520 return 2;
521 case Instruction::Select:
525 return 3;
527 return 4;
528 case Instruction::Call:
529 case Instruction::GetElementPtr:
530 case Instruction::PHI:
531 case Instruction::Switch:
532 // Cannot determine the number of operands from the opcode.
533 return -1u;
534 }
535 llvm_unreachable("all cases should be handled above");
536}
537#endif
538
542
543bool VPInstruction::canGenerateScalarForFirstLane() const {
545 return true;
547 return true;
548 switch (Opcode) {
549 case Instruction::Freeze:
550 case Instruction::ICmp:
551 case Instruction::PHI:
552 case Instruction::Select:
561 return true;
562 default:
563 return false;
564 }
565}
566
567/// Create a conditional branch using \p Cond branching to the successors of \p
568/// VPBB. Note that the first successor is always forward (i.e. not created yet)
569/// while the second successor may already have been created (if it is a header
570/// block and VPBB is a latch).
572 VPTransformState &State) {
573 // Replace the temporary unreachable terminator with a new conditional
574 // branch, hooking it up to backward destination (header) for latch blocks
575 // now, and to forward destination(s) later when they are created.
576 // Second successor may be backwards - iff it is already in VPBB2IRBB.
577 VPBasicBlock *SecondVPSucc = cast<VPBasicBlock>(VPBB->getSuccessors()[1]);
578 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
579 BasicBlock *IRBB = State.CFG.VPBB2IRBB[VPBB];
580 BranchInst *CondBr = State.Builder.CreateCondBr(Cond, IRBB, SecondIRSucc);
581 // First successor is always forward, reset it to nullptr
582 CondBr->setSuccessor(0, nullptr);
584 return CondBr;
585}
586
587Value *VPInstruction::generate(VPTransformState &State) {
588 IRBuilderBase &Builder = State.Builder;
589
591 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
592 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
593 Value *B = State.get(getOperand(1), OnlyFirstLaneUsed);
594 auto *Res =
595 Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B, Name);
596 if (auto *I = dyn_cast<Instruction>(Res))
597 applyFlags(*I);
598 return Res;
599 }
600
601 switch (getOpcode()) {
602 case VPInstruction::Not: {
603 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
604 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
605 return Builder.CreateNot(A, Name);
606 }
607 case Instruction::ExtractElement: {
608 assert(State.VF.isVector() && "Only extract elements from vectors");
609 if (getOperand(1)->isLiveIn()) {
610 unsigned IdxToExtract =
611 cast<ConstantInt>(getOperand(1)->getLiveInIRValue())->getZExtValue();
612 return State.get(getOperand(0), VPLane(IdxToExtract));
613 }
614 Value *Vec = State.get(getOperand(0));
615 Value *Idx = State.get(getOperand(1), /*IsScalar=*/true);
616 return Builder.CreateExtractElement(Vec, Idx, Name);
617 }
618 case Instruction::Freeze: {
620 return Builder.CreateFreeze(Op, Name);
621 }
622 case Instruction::FCmp:
623 case Instruction::ICmp: {
624 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
625 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
626 Value *B = State.get(getOperand(1), OnlyFirstLaneUsed);
627 return Builder.CreateCmp(getPredicate(), A, B, Name);
628 }
629 case Instruction::PHI: {
630 llvm_unreachable("should be handled by VPPhi::execute");
631 }
632 case Instruction::Select: {
633 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
634 Value *Cond = State.get(getOperand(0), OnlyFirstLaneUsed);
635 Value *Op1 = State.get(getOperand(1), OnlyFirstLaneUsed);
636 Value *Op2 = State.get(getOperand(2), OnlyFirstLaneUsed);
637 return Builder.CreateSelect(Cond, Op1, Op2, Name);
638 }
640 // Get first lane of vector induction variable.
641 Value *VIVElem0 = State.get(getOperand(0), VPLane(0));
642 // Get the original loop tripcount.
643 Value *ScalarTC = State.get(getOperand(1), VPLane(0));
644
645 // If this part of the active lane mask is scalar, generate the CMP directly
646 // to avoid unnecessary extracts.
647 if (State.VF.isScalar())
648 return Builder.CreateCmp(CmpInst::Predicate::ICMP_ULT, VIVElem0, ScalarTC,
649 Name);
650
651 auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
652 auto PredTy = VectorType::get(
653 Int1Ty, State.VF * cast<ConstantInt>(getOperand(2)->getLiveInIRValue())
654 ->getZExtValue());
655 return Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask,
656 {PredTy, ScalarTC->getType()},
657 {VIVElem0, ScalarTC}, nullptr, Name);
658 }
660 // Generate code to combine the previous and current values in vector v3.
661 //
662 // vector.ph:
663 // v_init = vector(..., ..., ..., a[-1])
664 // br vector.body
665 //
666 // vector.body
667 // i = phi [0, vector.ph], [i+4, vector.body]
668 // v1 = phi [v_init, vector.ph], [v2, vector.body]
669 // v2 = a[i, i+1, i+2, i+3];
670 // v3 = vector(v1(3), v2(0, 1, 2))
671
672 auto *V1 = State.get(getOperand(0));
673 if (!V1->getType()->isVectorTy())
674 return V1;
675 Value *V2 = State.get(getOperand(1));
676 return Builder.CreateVectorSplice(V1, V2, -1, Name);
677 }
679 unsigned UF = getParent()->getPlan()->getUF();
680 Value *ScalarTC = State.get(getOperand(0), VPLane(0));
681 Value *Step = createStepForVF(Builder, ScalarTC->getType(), State.VF, UF);
682 Value *Sub = Builder.CreateSub(ScalarTC, Step);
683 Value *Cmp = Builder.CreateICmp(CmpInst::Predicate::ICMP_UGT, ScalarTC, Step);
684 Value *Zero = ConstantInt::get(ScalarTC->getType(), 0);
685 return Builder.CreateSelect(Cmp, Sub, Zero);
686 }
688 // TODO: Restructure this code with an explicit remainder loop, vsetvli can
689 // be outside of the main loop.
690 Value *AVL = State.get(getOperand(0), /*IsScalar*/ true);
691 // Compute EVL
692 assert(AVL->getType()->isIntegerTy() &&
693 "Requested vector length should be an integer.");
694
695 assert(State.VF.isScalable() && "Expected scalable vector factor.");
696 Value *VFArg = State.Builder.getInt32(State.VF.getKnownMinValue());
697
698 Value *EVL = State.Builder.CreateIntrinsic(
699 State.Builder.getInt32Ty(), Intrinsic::experimental_get_vector_length,
700 {AVL, VFArg, State.Builder.getTrue()});
701 return EVL;
702 }
704 unsigned Part = getUnrollPart(*this);
705 auto *IV = State.get(getOperand(0), VPLane(0));
706 assert(Part != 0 && "Must have a positive part");
707 // The canonical IV is incremented by the vectorization factor (num of
708 // SIMD elements) times the unroll part.
709 Value *Step = createStepForVF(Builder, IV->getType(), State.VF, Part);
710 return Builder.CreateAdd(IV, Step, Name, hasNoUnsignedWrap(),
712 }
714 Value *Cond = State.get(getOperand(0), VPLane(0));
715 auto *Br = createCondBranch(Cond, getParent(), State);
716 applyMetadata(*Br);
717 return Br;
718 }
720 // First create the compare.
721 Value *IV = State.get(getOperand(0), /*IsScalar*/ true);
722 Value *TC = State.get(getOperand(1), /*IsScalar*/ true);
723 Value *Cond = Builder.CreateICmpEQ(IV, TC);
724 return createCondBranch(Cond, getParent(), State);
725 }
727 return Builder.CreateVectorSplat(
728 State.VF, State.get(getOperand(0), /*IsScalar*/ true), "broadcast");
729 }
731 // For struct types, we need to build a new 'wide' struct type, where each
732 // element is widened, i.e., we create a struct of vectors.
733 auto *StructTy =
735 Value *Res = PoisonValue::get(toVectorizedTy(StructTy, State.VF));
736 for (const auto &[LaneIndex, Op] : enumerate(operands())) {
737 for (unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
738 FieldIndex++) {
739 Value *ScalarValue =
740 Builder.CreateExtractValue(State.get(Op, true), FieldIndex);
741 Value *VectorValue = Builder.CreateExtractValue(Res, FieldIndex);
742 VectorValue =
743 Builder.CreateInsertElement(VectorValue, ScalarValue, LaneIndex);
744 Res = Builder.CreateInsertValue(Res, VectorValue, FieldIndex);
745 }
746 }
747 return Res;
748 }
750 auto *ScalarTy = State.TypeAnalysis.inferScalarType(getOperand(0));
751 auto NumOfElements = ElementCount::getFixed(getNumOperands());
752 Value *Res = PoisonValue::get(toVectorizedTy(ScalarTy, NumOfElements));
753 for (const auto &[Idx, Op] : enumerate(operands()))
754 Res = State.Builder.CreateInsertElement(Res, State.get(Op, true),
755 State.Builder.getInt32(Idx));
756 return Res;
757 }
759 if (State.VF.isScalar())
760 return State.get(getOperand(0), true);
761 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
763 // If this start vector is scaled then it should produce a vector with fewer
764 // elements than the VF.
765 ElementCount VF = State.VF.divideCoefficientBy(
766 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue());
767 auto *Iden = Builder.CreateVectorSplat(VF, State.get(getOperand(1), true));
768 Constant *Zero = Builder.getInt32(0);
769 return Builder.CreateInsertElement(Iden, State.get(getOperand(0), true),
770 Zero);
771 }
773 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
774 // and will be removed by breaking up the recipe further.
775 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
776 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
777 Value *ReducedPartRdx = State.get(getOperand(2));
778 for (unsigned Idx = 3; Idx < getNumOperands(); ++Idx)
779 ReducedPartRdx = Builder.CreateBinOp(
782 State.get(getOperand(Idx)), ReducedPartRdx, "bin.rdx");
783 return createAnyOfReduction(Builder, ReducedPartRdx,
784 State.get(getOperand(1), VPLane(0)), OrigPhi);
785 }
787 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
788 // and will be removed by breaking up the recipe further.
789 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
790 // Get its reduction variable descriptor.
791 RecurKind RK = PhiR->getRecurrenceKind();
793 "Unexpected reduction kind");
794 assert(!PhiR->isInLoop() &&
795 "In-loop FindLastIV reduction is not supported yet");
796
797 // The recipe's operands are the reduction phi, the start value, the
798 // sentinel value, followed by one operand for each part of the reduction.
799 unsigned UF = getNumOperands() - 3;
800 Value *ReducedPartRdx = State.get(getOperand(3));
801 RecurKind MinMaxKind;
804 MinMaxKind = IsSigned ? RecurKind::SMax : RecurKind::UMax;
805 else
806 MinMaxKind = IsSigned ? RecurKind::SMin : RecurKind::UMin;
807 for (unsigned Part = 1; Part < UF; ++Part)
808 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
809 State.get(getOperand(3 + Part)));
810
811 Value *Start = State.get(getOperand(1), true);
813 return createFindLastIVReduction(Builder, ReducedPartRdx, RK, Start,
814 Sentinel);
815 }
817 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
818 // and will be removed by breaking up the recipe further.
819 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
820 // Get its reduction variable descriptor.
821
822 RecurKind RK = PhiR->getRecurrenceKind();
824 "should be handled by ComputeFindIVResult");
825
826 // The recipe's operands are the reduction phi, followed by one operand for
827 // each part of the reduction.
828 unsigned UF = getNumOperands() - 1;
829 VectorParts RdxParts(UF);
830 for (unsigned Part = 0; Part < UF; ++Part)
831 RdxParts[Part] = State.get(getOperand(1 + Part), PhiR->isInLoop());
832
833 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
834 if (hasFastMathFlags())
836
837 // Reduce all of the unrolled parts into a single vector.
838 Value *ReducedPartRdx = RdxParts[0];
839 if (PhiR->isOrdered()) {
840 ReducedPartRdx = RdxParts[UF - 1];
841 } else {
842 // Floating-point operations should have some FMF to enable the reduction.
843 for (unsigned Part = 1; Part < UF; ++Part) {
844 Value *RdxPart = RdxParts[Part];
846 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
847 else {
849 // For sub-recurrences, each UF's reduction variable is already
850 // negative, we need to do: reduce.add(-acc_uf0 + -acc_uf1)
851 if (RK == RecurKind::Sub)
852 Opcode = Instruction::Add;
853 else
854 Opcode =
856 ReducedPartRdx =
857 Builder.CreateBinOp(Opcode, RdxPart, ReducedPartRdx, "bin.rdx");
858 }
859 }
860 }
861
862 // Create the reduction after the loop. Note that inloop reductions create
863 // the target reduction in the loop using a Reduction recipe.
864 if (State.VF.isVector() && !PhiR->isInLoop()) {
865 // TODO: Support in-order reductions based on the recurrence descriptor.
866 // All ops in the reduction inherit fast-math-flags from the recurrence
867 // descriptor.
868 ReducedPartRdx = createSimpleReduction(Builder, ReducedPartRdx, RK);
869 }
870
871 return ReducedPartRdx;
872 }
875 unsigned Offset = getOpcode() == VPInstruction::ExtractLastElement ? 1 : 2;
876 Value *Res;
877 if (State.VF.isVector()) {
878 assert(Offset <= State.VF.getKnownMinValue() &&
879 "invalid offset to extract from");
880 // Extract lane VF - Offset from the operand.
881 Res = State.get(getOperand(0), VPLane::getLaneFromEnd(State.VF, Offset));
882 } else {
883 assert(Offset <= 1 && "invalid offset to extract from");
884 Res = State.get(getOperand(0));
885 }
887 Res->setName(Name);
888 return Res;
889 }
891 Value *A = State.get(getOperand(0));
892 Value *B = State.get(getOperand(1));
893 return Builder.CreateLogicalAnd(A, B, Name);
894 }
897 "can only generate first lane for PtrAdd");
898 Value *Ptr = State.get(getOperand(0), VPLane(0));
899 Value *Addend = State.get(getOperand(1), VPLane(0));
900 return Builder.CreatePtrAdd(Ptr, Addend, Name, getGEPNoWrapFlags());
901 }
903 Value *Ptr =
905 Value *Addend = State.get(getOperand(1));
906 return Builder.CreatePtrAdd(Ptr, Addend, Name, getGEPNoWrapFlags());
907 }
909 Value *Res = Builder.CreateFreeze(State.get(getOperand(0)));
910 for (VPValue *Op : drop_begin(operands()))
911 Res = Builder.CreateOr(Res, Builder.CreateFreeze(State.get(Op)));
912 return State.VF.isScalar() ? Res : Builder.CreateOrReduce(Res);
913 }
915 Value *LaneToExtract = State.get(getOperand(0), true);
916 Type *IdxTy = State.TypeAnalysis.inferScalarType(getOperand(0));
917 Value *Res = nullptr;
918 Value *RuntimeVF = getRuntimeVF(State.Builder, IdxTy, State.VF);
919
920 for (unsigned Idx = 1; Idx != getNumOperands(); ++Idx) {
921 Value *VectorStart =
922 Builder.CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
923 Value *VectorIdx = Idx == 1
924 ? LaneToExtract
925 : Builder.CreateSub(LaneToExtract, VectorStart);
926 Value *Ext = State.VF.isScalar()
927 ? State.get(getOperand(Idx))
928 : Builder.CreateExtractElement(
929 State.get(getOperand(Idx)), VectorIdx);
930 if (Res) {
931 Value *Cmp = Builder.CreateICmpUGE(LaneToExtract, VectorStart);
932 Res = Builder.CreateSelect(Cmp, Ext, Res);
933 } else {
934 Res = Ext;
935 }
936 }
937 return Res;
938 }
940 if (getNumOperands() == 1) {
941 Value *Mask = State.get(getOperand(0));
942 return Builder.CreateCountTrailingZeroElems(Builder.getInt64Ty(), Mask,
943 true, Name);
944 }
945 // If there are multiple operands, create a chain of selects to pick the
946 // first operand with an active lane and add the number of lanes of the
947 // preceding operands.
948 Value *RuntimeVF =
949 getRuntimeVF(State.Builder, State.Builder.getInt64Ty(), State.VF);
950 unsigned LastOpIdx = getNumOperands() - 1;
951 Value *Res = nullptr;
952 for (int Idx = LastOpIdx; Idx >= 0; --Idx) {
953 Value *TrailingZeros =
954 State.VF.isScalar()
955 ? Builder.CreateZExt(
956 Builder.CreateICmpEQ(State.get(getOperand(Idx)),
957 Builder.getFalse()),
958 Builder.getInt64Ty())
959 : Builder.CreateCountTrailingZeroElems(Builder.getInt64Ty(),
960 State.get(getOperand(Idx)),
961 true, Name);
962 Value *Current = Builder.CreateAdd(
963 Builder.CreateMul(RuntimeVF, Builder.getInt64(Idx)), TrailingZeros);
964 if (Res) {
965 Value *Cmp = Builder.CreateICmpNE(TrailingZeros, RuntimeVF);
966 Res = Builder.CreateSelect(Cmp, Current, Res);
967 } else {
968 Res = Current;
969 }
970 }
971
972 return Res;
973 }
975 return State.get(getOperand(0), true);
976 default:
977 llvm_unreachable("Unsupported opcode for instruction");
978 }
979}
980
982 unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const {
983 Type *ScalarTy = Ctx.Types.inferScalarType(this);
984 Type *ResultTy = VF.isVector() ? toVectorTy(ScalarTy, VF) : ScalarTy;
985 switch (Opcode) {
986 case Instruction::FNeg:
987 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
988 case Instruction::UDiv:
989 case Instruction::SDiv:
990 case Instruction::SRem:
991 case Instruction::URem:
992 case Instruction::Add:
993 case Instruction::FAdd:
994 case Instruction::Sub:
995 case Instruction::FSub:
996 case Instruction::Mul:
997 case Instruction::FMul:
998 case Instruction::FDiv:
999 case Instruction::FRem:
1000 case Instruction::Shl:
1001 case Instruction::LShr:
1002 case Instruction::AShr:
1003 case Instruction::And:
1004 case Instruction::Or:
1005 case Instruction::Xor: {
1008
1009 if (VF.isVector()) {
1010 // Certain instructions can be cheaper to vectorize if they have a
1011 // constant second vector operand. One example of this are shifts on x86.
1012 VPValue *RHS = getOperand(1);
1013 RHSInfo = Ctx.getOperandInfo(RHS);
1014
1015 if (RHSInfo.Kind == TargetTransformInfo::OK_AnyValue &&
1018 }
1019
1022 if (CtxI)
1023 Operands.append(CtxI->value_op_begin(), CtxI->value_op_end());
1024 return Ctx.TTI.getArithmeticInstrCost(
1025 Opcode, ResultTy, Ctx.CostKind,
1026 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1027 RHSInfo, Operands, CtxI, &Ctx.TLI);
1028 }
1029 case Instruction::Freeze:
1030 // This opcode is unknown. Assume that it is the same as 'mul'.
1031 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
1032 Ctx.CostKind);
1033 case Instruction::ExtractValue:
1034 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
1035 Ctx.CostKind);
1036 case Instruction::ICmp:
1037 case Instruction::FCmp: {
1038 Type *ScalarOpTy = Ctx.Types.inferScalarType(getOperand(0));
1039 Type *OpTy = VF.isVector() ? toVectorTy(ScalarOpTy, VF) : ScalarOpTy;
1041 return Ctx.TTI.getCmpSelInstrCost(
1042 Opcode, OpTy, CmpInst::makeCmpResultType(OpTy), getPredicate(),
1043 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
1044 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
1045 }
1046 }
1047 llvm_unreachable("called for unsupported opcode");
1048}
1049
1051 VPCostContext &Ctx) const {
1053 if (!getUnderlyingValue() && getOpcode() != Instruction::FMul) {
1054 // TODO: Compute cost for VPInstructions without underlying values once
1055 // the legacy cost model has been retired.
1056 return 0;
1057 }
1058
1060 "Should only generate a vector value or single scalar, not scalars "
1061 "for all lanes.");
1063 getOpcode(),
1065 }
1066
1067 switch (getOpcode()) {
1068 case Instruction::Select: {
1069 // TODO: It may be possible to improve this by analyzing where the
1070 // condition operand comes from.
1072 auto *CondTy = Ctx.Types.inferScalarType(getOperand(0));
1073 auto *VecTy = Ctx.Types.inferScalarType(getOperand(1));
1074 if (!vputils::onlyFirstLaneUsed(this)) {
1075 CondTy = toVectorTy(CondTy, VF);
1076 VecTy = toVectorTy(VecTy, VF);
1077 }
1078 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1079 Ctx.CostKind);
1080 }
1081 case Instruction::ExtractElement:
1083 if (VF.isScalar()) {
1084 // ExtractLane with VF=1 takes care of handling extracting across multiple
1085 // parts.
1086 return 0;
1087 }
1088
1089 // Add on the cost of extracting the element.
1090 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF);
1091 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1092 Ctx.CostKind);
1093 }
1094 case VPInstruction::AnyOf: {
1095 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1096 return Ctx.TTI.getArithmeticReductionCost(
1097 Instruction::Or, cast<VectorType>(VecTy), std::nullopt, Ctx.CostKind);
1098 }
1100 Type *ScalarTy = Ctx.Types.inferScalarType(getOperand(0));
1101 if (VF.isScalar())
1102 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1104 CmpInst::ICMP_EQ, Ctx.CostKind);
1105 // Calculate the cost of determining the lane index.
1106 auto *PredTy = toVectorTy(ScalarTy, VF);
1107 IntrinsicCostAttributes Attrs(Intrinsic::experimental_cttz_elts,
1108 Type::getInt64Ty(Ctx.LLVMCtx),
1109 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1110 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1111 }
1113 assert(VF.isVector() && "Scalar FirstOrderRecurrenceSplice?");
1115 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
1116 Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1117
1118 return Ctx.TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
1119 cast<VectorType>(VectorTy),
1120 cast<VectorType>(VectorTy), Mask,
1121 Ctx.CostKind, VF.getKnownMinValue() - 1);
1122 }
1124 Type *ArgTy = Ctx.Types.inferScalarType(getOperand(0));
1125 unsigned Multiplier =
1126 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue();
1127 Type *RetTy = toVectorTy(Type::getInt1Ty(Ctx.LLVMCtx), VF * Multiplier);
1128 IntrinsicCostAttributes Attrs(Intrinsic::get_active_lane_mask, RetTy,
1129 {ArgTy, ArgTy});
1130 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1131 }
1133 Type *Arg0Ty = Ctx.Types.inferScalarType(getOperand(0));
1134 Type *I32Ty = Type::getInt32Ty(Ctx.LLVMCtx);
1135 Type *I1Ty = Type::getInt1Ty(Ctx.LLVMCtx);
1136 IntrinsicCostAttributes Attrs(Intrinsic::experimental_get_vector_length,
1137 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1138 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1139 }
1141 // Add on the cost of extracting the element.
1142 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF);
1143 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1144 VecTy, Ctx.CostKind, 0);
1145 }
1147 if (VF == ElementCount::getScalable(1))
1150 default:
1151 // TODO: Compute cost other VPInstructions once the legacy cost model has
1152 // been retired.
1154 "unexpected VPInstruction witht underlying value");
1155 return 0;
1156 }
1157}
1158
1170
1172 switch (getOpcode()) {
1173 case Instruction::PHI:
1177 return true;
1178 default:
1179 return isScalarCast();
1180 }
1181}
1182
1184 assert(!State.Lane && "VPInstruction executing an Lane");
1185 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
1187 "Set flags not supported for the provided opcode");
1188 if (hasFastMathFlags())
1189 State.Builder.setFastMathFlags(getFastMathFlags());
1190 Value *GeneratedValue = generate(State);
1191 if (!hasResult())
1192 return;
1193 assert(GeneratedValue && "generate must produce a value");
1194 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1197 assert((((GeneratedValue->getType()->isVectorTy() ||
1198 GeneratedValue->getType()->isStructTy()) ==
1199 !GeneratesPerFirstLaneOnly) ||
1200 State.VF.isScalar()) &&
1201 "scalar value but not only first lane defined");
1202 State.set(this, GeneratedValue,
1203 /*IsScalar*/ GeneratesPerFirstLaneOnly);
1204}
1205
1208 return false;
1209 switch (getOpcode()) {
1210 case Instruction::ExtractElement:
1211 case Instruction::Freeze:
1212 case Instruction::FCmp:
1213 case Instruction::ICmp:
1214 case Instruction::Select:
1215 case Instruction::PHI:
1227 case VPInstruction::Not:
1234 return false;
1235 default:
1236 return true;
1237 }
1238}
1239
1241 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1243 return vputils::onlyFirstLaneUsed(this);
1244
1245 switch (getOpcode()) {
1246 default:
1247 return false;
1248 case Instruction::ExtractElement:
1249 return Op == getOperand(1);
1250 case Instruction::PHI:
1251 return true;
1252 case Instruction::FCmp:
1253 case Instruction::ICmp:
1254 case Instruction::Select:
1255 case Instruction::Or:
1256 case Instruction::Freeze:
1257 case VPInstruction::Not:
1258 // TODO: Cover additional opcodes.
1259 return vputils::onlyFirstLaneUsed(this);
1268 return true;
1271 // Before replicating by VF, Build(Struct)Vector uses all lanes of the
1272 // operand, after replicating its operands only the first lane is used.
1273 // Before replicating, it will have only a single operand.
1274 return getNumOperands() > 1;
1276 return Op == getOperand(0) || vputils::onlyFirstLaneUsed(this);
1278 return Op == getOperand(0);
1281 return Op == getOperand(1);
1283 return Op == getOperand(0);
1284 };
1285 llvm_unreachable("switch should return");
1286}
1287
1289 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1291 return vputils::onlyFirstPartUsed(this);
1292
1293 switch (getOpcode()) {
1294 default:
1295 return false;
1296 case Instruction::FCmp:
1297 case Instruction::ICmp:
1298 case Instruction::Select:
1299 return vputils::onlyFirstPartUsed(this);
1303 return true;
1304 };
1305 llvm_unreachable("switch should return");
1306}
1307
1308#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1310 VPSlotTracker SlotTracker(getParent()->getPlan());
1311 print(dbgs(), "", SlotTracker);
1312}
1313
1315 VPSlotTracker &SlotTracker) const {
1316 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1317
1318 if (hasResult()) {
1320 O << " = ";
1321 }
1322
1323 switch (getOpcode()) {
1324 case VPInstruction::Not:
1325 O << "not";
1326 break;
1328 O << "combined load";
1329 break;
1331 O << "combined store";
1332 break;
1334 O << "active lane mask";
1335 break;
1337 O << "EXPLICIT-VECTOR-LENGTH";
1338 break;
1340 O << "first-order splice";
1341 break;
1343 O << "branch-on-cond";
1344 break;
1346 O << "TC > VF ? TC - VF : 0";
1347 break;
1349 O << "VF * Part +";
1350 break;
1352 O << "branch-on-count";
1353 break;
1355 O << "broadcast";
1356 break;
1358 O << "buildstructvector";
1359 break;
1361 O << "buildvector";
1362 break;
1364 O << "extract-lane";
1365 break;
1367 O << "extract-last-element";
1368 break;
1370 O << "extract-penultimate-element";
1371 break;
1373 O << "compute-anyof-result";
1374 break;
1376 O << "compute-find-iv-result";
1377 break;
1379 O << "compute-reduction-result";
1380 break;
1382 O << "logical-and";
1383 break;
1385 O << "ptradd";
1386 break;
1388 O << "wide-ptradd";
1389 break;
1391 O << "any-of";
1392 break;
1394 O << "first-active-lane";
1395 break;
1397 O << "reduction-start-vector";
1398 break;
1400 O << "resume-for-epilogue";
1401 break;
1402 default:
1404 }
1405
1406 printFlags(O);
1408
1409 if (auto DL = getDebugLoc()) {
1410 O << ", !dbg ";
1411 DL.print(O);
1412 }
1413}
1414#endif
1415
1417 State.setDebugLocFrom(getDebugLoc());
1418 if (isScalarCast()) {
1419 Value *Op = State.get(getOperand(0), VPLane(0));
1420 Value *Cast = State.Builder.CreateCast(Instruction::CastOps(getOpcode()),
1421 Op, ResultTy);
1422 State.set(this, Cast, VPLane(0));
1423 return;
1424 }
1425 switch (getOpcode()) {
1427 Value *StepVector =
1428 State.Builder.CreateStepVector(VectorType::get(ResultTy, State.VF));
1429 State.set(this, StepVector);
1430 break;
1431 }
1432 case VPInstruction::VScale: {
1433 Value *VScale = State.Builder.CreateVScale(ResultTy);
1434 State.set(this, VScale, true);
1435 break;
1436 }
1437
1438 default:
1439 llvm_unreachable("opcode not implemented yet");
1440 }
1441}
1442
1443#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1445 VPSlotTracker &SlotTracker) const {
1446 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1448 O << " = ";
1449
1450 switch (getOpcode()) {
1452 O << "wide-iv-step ";
1454 break;
1456 O << "step-vector " << *ResultTy;
1457 break;
1459 O << "vscale " << *ResultTy;
1460 break;
1461 default:
1462 assert(Instruction::isCast(getOpcode()) && "unhandled opcode");
1465 O << " to " << *ResultTy;
1466 }
1467}
1468#endif
1469
1471 State.setDebugLocFrom(getDebugLoc());
1472 PHINode *NewPhi = State.Builder.CreatePHI(
1473 State.TypeAnalysis.inferScalarType(this), 2, getName());
1474 unsigned NumIncoming = getNumIncoming();
1475 if (getParent() != getParent()->getPlan()->getScalarPreheader()) {
1476 // TODO: Fixup all incoming values of header phis once recipes defining them
1477 // are introduced.
1478 NumIncoming = 1;
1479 }
1480 for (unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1481 Value *IncV = State.get(getIncomingValue(Idx), VPLane(0));
1482 BasicBlock *PredBB = State.CFG.VPBB2IRBB.at(getIncomingBlock(Idx));
1483 NewPhi->addIncoming(IncV, PredBB);
1484 }
1485 State.set(this, NewPhi, VPLane(0));
1486}
1487
1488#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1489void VPPhi::print(raw_ostream &O, const Twine &Indent,
1490 VPSlotTracker &SlotTracker) const {
1491 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1493 O << " = phi ";
1495}
1496#endif
1497
1498VPIRInstruction *VPIRInstruction ::create(Instruction &I) {
1499 if (auto *Phi = dyn_cast<PHINode>(&I))
1500 return new VPIRPhi(*Phi);
1501 return new VPIRInstruction(I);
1502}
1503
1505 assert(!isa<VPIRPhi>(this) && getNumOperands() == 0 &&
1506 "PHINodes must be handled by VPIRPhi");
1507 // Advance the insert point after the wrapped IR instruction. This allows
1508 // interleaving VPIRInstructions and other recipes.
1509 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1510}
1511
1513 VPCostContext &Ctx) const {
1514 // The recipe wraps an existing IR instruction on the border of VPlan's scope,
1515 // hence it does not contribute to the cost-modeling for the VPlan.
1516 return 0;
1517}
1518
1521 "can only update exiting operands to phi nodes");
1522 assert(getNumOperands() > 0 && "must have at least one operand");
1523 VPValue *Exiting = getOperand(0);
1524 if (Exiting->isLiveIn())
1525 return;
1526
1527 Exiting = Builder.createNaryOp(VPInstruction::ExtractLastElement, {Exiting});
1528 setOperand(0, Exiting);
1529}
1530
1531#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1533 VPSlotTracker &SlotTracker) const {
1534 O << Indent << "IR " << I;
1535}
1536#endif
1537
1539 PHINode *Phi = &getIRPhi();
1540 for (const auto &[Idx, Op] : enumerate(operands())) {
1541 VPValue *ExitValue = Op;
1542 auto Lane = vputils::isSingleScalar(ExitValue)
1544 : VPLane::getLastLaneForVF(State.VF);
1545 VPBlockBase *Pred = getParent()->getPredecessors()[Idx];
1546 auto *PredVPBB = Pred->getExitingBasicBlock();
1547 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1548 // Set insertion point in PredBB in case an extract needs to be generated.
1549 // TODO: Model extracts explicitly.
1550 State.Builder.SetInsertPoint(PredBB, PredBB->getFirstNonPHIIt());
1551 Value *V = State.get(ExitValue, VPLane(Lane));
1552 // If there is no existing block for PredBB in the phi, add a new incoming
1553 // value. Otherwise update the existing incoming value for PredBB.
1554 if (Phi->getBasicBlockIndex(PredBB) == -1)
1555 Phi->addIncoming(V, PredBB);
1556 else
1557 Phi->setIncomingValueForBlock(PredBB, V);
1558 }
1559
1560 // Advance the insert point after the wrapped IR instruction. This allows
1561 // interleaving VPIRInstructions and other recipes.
1562 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1563}
1564
1566 VPRecipeBase *R = const_cast<VPRecipeBase *>(getAsRecipe());
1567 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1568 "Number of phi operands must match number of predecessors");
1569 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1570 R->removeOperand(Position);
1571}
1572
1573#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1575 VPSlotTracker &SlotTracker) const {
1576 interleaveComma(enumerate(getAsRecipe()->operands()), O,
1577 [this, &O, &SlotTracker](auto Op) {
1578 O << "[ ";
1579 Op.value()->printAsOperand(O, SlotTracker);
1580 O << ", ";
1581 getIncomingBlock(Op.index())->printAsOperand(O);
1582 O << " ]";
1583 });
1584}
1585#endif
1586
1587#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1588void VPIRPhi::print(raw_ostream &O, const Twine &Indent,
1589 VPSlotTracker &SlotTracker) const {
1591
1592 if (getNumOperands() != 0) {
1593 O << " (extra operand" << (getNumOperands() > 1 ? "s" : "") << ": ";
1595 [&O, &SlotTracker](auto Op) {
1596 std::get<0>(Op)->printAsOperand(O, SlotTracker);
1597 O << " from ";
1598 std::get<1>(Op)->printAsOperand(O);
1599 });
1600 O << ")";
1601 }
1602}
1603#endif
1604
1606 : VPIRMetadata(I) {
1607 if (!LVer || !isa<LoadInst, StoreInst>(&I))
1608 return;
1609 const auto &[AliasScopeMD, NoAliasMD] = LVer->getNoAliasMetadataFor(&I);
1610 if (AliasScopeMD)
1611 Metadata.emplace_back(LLVMContext::MD_alias_scope, AliasScopeMD);
1612 if (NoAliasMD)
1613 Metadata.emplace_back(LLVMContext::MD_noalias, NoAliasMD);
1614}
1615
1617 for (const auto &[Kind, Node] : Metadata)
1618 I.setMetadata(Kind, Node);
1619}
1620
1622 SmallVector<std::pair<unsigned, MDNode *>> MetadataIntersection;
1623 for (const auto &[KindA, MDA] : Metadata) {
1624 for (const auto &[KindB, MDB] : Other.Metadata) {
1625 if (KindA == KindB && MDA == MDB) {
1626 MetadataIntersection.emplace_back(KindA, MDA);
1627 break;
1628 }
1629 }
1630 }
1631 Metadata = std::move(MetadataIntersection);
1632}
1633
1635 assert(State.VF.isVector() && "not widening");
1636 assert(Variant != nullptr && "Can't create vector function.");
1637
1638 FunctionType *VFTy = Variant->getFunctionType();
1639 // Add return type if intrinsic is overloaded on it.
1641 for (const auto &I : enumerate(args())) {
1642 Value *Arg;
1643 // Some vectorized function variants may also take a scalar argument,
1644 // e.g. linear parameters for pointers. This needs to be the scalar value
1645 // from the start of the respective part when interleaving.
1646 if (!VFTy->getParamType(I.index())->isVectorTy())
1647 Arg = State.get(I.value(), VPLane(0));
1648 else
1649 Arg = State.get(I.value(), onlyFirstLaneUsed(I.value()));
1650 Args.push_back(Arg);
1651 }
1652
1655 if (CI)
1656 CI->getOperandBundlesAsDefs(OpBundles);
1657
1658 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1659 applyFlags(*V);
1660 applyMetadata(*V);
1661 V->setCallingConv(Variant->getCallingConv());
1662
1663 if (!V->getType()->isVoidTy())
1664 State.set(this, V);
1665}
1666
1668 VPCostContext &Ctx) const {
1669 return Ctx.TTI.getCallInstrCost(nullptr, Variant->getReturnType(),
1670 Variant->getFunctionType()->params(),
1671 Ctx.CostKind);
1672}
1673
1674#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1676 VPSlotTracker &SlotTracker) const {
1677 O << Indent << "WIDEN-CALL ";
1678
1679 Function *CalledFn = getCalledScalarFunction();
1680 if (CalledFn->getReturnType()->isVoidTy())
1681 O << "void ";
1682 else {
1684 O << " = ";
1685 }
1686
1687 O << "call";
1688 printFlags(O);
1689 O << " @" << CalledFn->getName() << "(";
1690 interleaveComma(args(), O, [&O, &SlotTracker](VPValue *Op) {
1691 Op->printAsOperand(O, SlotTracker);
1692 });
1693 O << ")";
1694
1695 O << " (using library function";
1696 if (Variant->hasName())
1697 O << ": " << Variant->getName();
1698 O << ")";
1699}
1700#endif
1701
1703 assert(State.VF.isVector() && "not widening");
1704
1705 SmallVector<Type *, 2> TysForDecl;
1706 // Add return type if intrinsic is overloaded on it.
1707 if (isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, -1, State.TTI))
1708 TysForDecl.push_back(VectorType::get(getResultType(), State.VF));
1710 for (const auto &I : enumerate(operands())) {
1711 // Some intrinsics have a scalar argument - don't replace it with a
1712 // vector.
1713 Value *Arg;
1714 if (isVectorIntrinsicWithScalarOpAtArg(VectorIntrinsicID, I.index(),
1715 State.TTI))
1716 Arg = State.get(I.value(), VPLane(0));
1717 else
1718 Arg = State.get(I.value(), onlyFirstLaneUsed(I.value()));
1719 if (isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, I.index(),
1720 State.TTI))
1721 TysForDecl.push_back(Arg->getType());
1722 Args.push_back(Arg);
1723 }
1724
1725 // Use vector version of the intrinsic.
1726 Module *M = State.Builder.GetInsertBlock()->getModule();
1727 Function *VectorF =
1728 Intrinsic::getOrInsertDeclaration(M, VectorIntrinsicID, TysForDecl);
1729 assert(VectorF &&
1730 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1731
1734 if (CI)
1735 CI->getOperandBundlesAsDefs(OpBundles);
1736
1737 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1738
1739 applyFlags(*V);
1740 applyMetadata(*V);
1741
1742 if (!V->getType()->isVoidTy())
1743 State.set(this, V);
1744}
1745
1746/// Compute the cost for the intrinsic \p ID with \p Operands, produced by \p R.
1749 const VPRecipeWithIRFlags &R,
1750 ElementCount VF,
1751 VPCostContext &Ctx) {
1752 // Some backends analyze intrinsic arguments to determine cost. Use the
1753 // underlying value for the operand if it has one. Otherwise try to use the
1754 // operand of the underlying call instruction, if there is one. Otherwise
1755 // clear Arguments.
1756 // TODO: Rework TTI interface to be independent of concrete IR values.
1758 for (const auto &[Idx, Op] : enumerate(Operands)) {
1759 auto *V = Op->getUnderlyingValue();
1760 if (!V) {
1761 if (auto *UI = dyn_cast_or_null<CallBase>(R.getUnderlyingValue())) {
1762 Arguments.push_back(UI->getArgOperand(Idx));
1763 continue;
1764 }
1765 Arguments.clear();
1766 break;
1767 }
1768 Arguments.push_back(V);
1769 }
1770
1771 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1772 Type *RetTy = VF.isVector() ? toVectorizedTy(ScalarRetTy, VF) : ScalarRetTy;
1773 SmallVector<Type *> ParamTys;
1774 for (const VPValue *Op : Operands) {
1775 ParamTys.push_back(VF.isVector()
1776 ? toVectorTy(Ctx.Types.inferScalarType(Op), VF)
1777 : Ctx.Types.inferScalarType(Op));
1778 }
1779
1780 // TODO: Rework TTI interface to avoid reliance on underlying IntrinsicInst.
1781 FastMathFlags FMF =
1782 R.hasFastMathFlags() ? R.getFastMathFlags() : FastMathFlags();
1783 IntrinsicCostAttributes CostAttrs(
1784 ID, RetTy, Arguments, ParamTys, FMF,
1785 dyn_cast_or_null<IntrinsicInst>(R.getUnderlyingValue()),
1786 InstructionCost::getInvalid(), &Ctx.TLI);
1787 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1788}
1789
1791 VPCostContext &Ctx) const {
1793 return getCostForIntrinsics(VectorIntrinsicID, ArgOps, *this, VF, Ctx);
1794}
1795
1797 return Intrinsic::getBaseName(VectorIntrinsicID);
1798}
1799
1801 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1802 return all_of(enumerate(operands()), [this, &Op](const auto &X) {
1803 auto [Idx, V] = X;
1805 Idx, nullptr);
1806 });
1807}
1808
1809#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1811 VPSlotTracker &SlotTracker) const {
1812 O << Indent << "WIDEN-INTRINSIC ";
1813 if (ResultTy->isVoidTy()) {
1814 O << "void ";
1815 } else {
1817 O << " = ";
1818 }
1819
1820 O << "call";
1821 printFlags(O);
1822 O << getIntrinsicName() << "(";
1823
1825 Op->printAsOperand(O, SlotTracker);
1826 });
1827 O << ")";
1828}
1829#endif
1830
1832 IRBuilderBase &Builder = State.Builder;
1833
1834 Value *Address = State.get(getOperand(0));
1835 Value *IncAmt = State.get(getOperand(1), /*IsScalar=*/true);
1836 VectorType *VTy = cast<VectorType>(Address->getType());
1837
1838 // The histogram intrinsic requires a mask even if the recipe doesn't;
1839 // if the mask operand was omitted then all lanes should be executed and
1840 // we just need to synthesize an all-true mask.
1841 Value *Mask = nullptr;
1842 if (VPValue *VPMask = getMask())
1843 Mask = State.get(VPMask);
1844 else
1845 Mask =
1846 Builder.CreateVectorSplat(VTy->getElementCount(), Builder.getInt1(1));
1847
1848 // If this is a subtract, we want to invert the increment amount. We may
1849 // add a separate intrinsic in future, but for now we'll try this.
1850 if (Opcode == Instruction::Sub)
1851 IncAmt = Builder.CreateNeg(IncAmt);
1852 else
1853 assert(Opcode == Instruction::Add && "only add or sub supported for now");
1854
1855 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1856 {VTy, IncAmt->getType()},
1857 {Address, IncAmt, Mask});
1858}
1859
1861 VPCostContext &Ctx) const {
1862 // FIXME: Take the gather and scatter into account as well. For now we're
1863 // generating the same cost as the fallback path, but we'll likely
1864 // need to create a new TTI method for determining the cost, including
1865 // whether we can use base + vec-of-smaller-indices or just
1866 // vec-of-pointers.
1867 assert(VF.isVector() && "Invalid VF for histogram cost");
1868 Type *AddressTy = Ctx.Types.inferScalarType(getOperand(0));
1869 VPValue *IncAmt = getOperand(1);
1870 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1871 VectorType *VTy = VectorType::get(IncTy, VF);
1872
1873 // Assume that a non-constant update value (or a constant != 1) requires
1874 // a multiply, and add that into the cost.
1875 InstructionCost MulCost =
1876 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1877 if (IncAmt->isLiveIn()) {
1879
1880 if (CI && CI->getZExtValue() == 1)
1881 MulCost = TTI::TCC_Free;
1882 }
1883
1884 // Find the cost of the histogram operation itself.
1885 Type *PtrTy = VectorType::get(AddressTy, VF);
1886 Type *MaskTy = VectorType::get(Type::getInt1Ty(Ctx.LLVMCtx), VF);
1887 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
1888 Type::getVoidTy(Ctx.LLVMCtx),
1889 {PtrTy, IncTy, MaskTy});
1890
1891 // Add the costs together with the add/sub operation.
1892 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1893 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1894}
1895
1896#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1898 VPSlotTracker &SlotTracker) const {
1899 O << Indent << "WIDEN-HISTOGRAM buckets: ";
1901
1902 if (Opcode == Instruction::Sub)
1903 O << ", dec: ";
1904 else {
1905 assert(Opcode == Instruction::Add);
1906 O << ", inc: ";
1907 }
1909
1910 if (VPValue *Mask = getMask()) {
1911 O << ", mask: ";
1912 Mask->printAsOperand(O, SlotTracker);
1913 }
1914}
1915
1917 VPSlotTracker &SlotTracker) const {
1918 O << Indent << "WIDEN-SELECT ";
1920 O << " = select ";
1921 printFlags(O);
1923 O << ", ";
1925 O << ", ";
1927 O << (isInvariantCond() ? " (condition is loop invariant)" : "");
1928}
1929#endif
1930
1932 // The condition can be loop invariant but still defined inside the
1933 // loop. This means that we can't just use the original 'cond' value.
1934 // We have to take the 'vectorized' value and pick the first lane.
1935 // Instcombine will make this a no-op.
1936 auto *InvarCond =
1937 isInvariantCond() ? State.get(getCond(), VPLane(0)) : nullptr;
1938
1939 Value *Cond = InvarCond ? InvarCond : State.get(getCond());
1940 Value *Op0 = State.get(getOperand(1));
1941 Value *Op1 = State.get(getOperand(2));
1942 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
1943 State.set(this, Sel);
1944 if (auto *I = dyn_cast<Instruction>(Sel)) {
1946 applyFlags(*I);
1947 applyMetadata(*I);
1948 }
1949}
1950
1952 VPCostContext &Ctx) const {
1954 bool ScalarCond = getOperand(0)->isDefinedOutsideLoopRegions();
1955 Type *ScalarTy = Ctx.Types.inferScalarType(this);
1956 Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1957
1958 VPValue *Op0, *Op1;
1959 using namespace llvm::VPlanPatternMatch;
1960 if (!ScalarCond && ScalarTy->getScalarSizeInBits() == 1 &&
1961 (match(this, m_LogicalAnd(m_VPValue(Op0), m_VPValue(Op1))) ||
1962 match(this, m_LogicalOr(m_VPValue(Op0), m_VPValue(Op1))))) {
1963 // select x, y, false --> x & y
1964 // select x, true, y --> x | y
1965 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1966 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1967
1969 if (all_of(operands(),
1970 [](VPValue *Op) { return Op->getUnderlyingValue(); }))
1971 Operands.append(SI->op_begin(), SI->op_end());
1972 bool IsLogicalOr = match(this, m_LogicalOr(m_VPValue(Op0), m_VPValue(Op1)));
1973 return Ctx.TTI.getArithmeticInstrCost(
1974 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1975 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, SI);
1976 }
1977
1978 Type *CondTy = Ctx.Types.inferScalarType(getOperand(0));
1979 if (!ScalarCond)
1980 CondTy = VectorType::get(CondTy, VF);
1981
1983 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
1984 Pred = Cmp->getPredicate();
1985 return Ctx.TTI.getCmpSelInstrCost(
1986 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1987 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, SI);
1988}
1989
1990VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(const FastMathFlags &FMF) {
1991 AllowReassoc = FMF.allowReassoc();
1992 NoNaNs = FMF.noNaNs();
1993 NoInfs = FMF.noInfs();
1994 NoSignedZeros = FMF.noSignedZeros();
1995 AllowReciprocal = FMF.allowReciprocal();
1996 AllowContract = FMF.allowContract();
1997 ApproxFunc = FMF.approxFunc();
1998}
1999
2000#if !defined(NDEBUG)
2001bool VPIRFlags::flagsValidForOpcode(unsigned Opcode) const {
2002 switch (OpType) {
2003 case OperationType::OverflowingBinOp:
2004 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2005 Opcode == Instruction::Mul ||
2006 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2007 case OperationType::Trunc:
2008 return Opcode == Instruction::Trunc;
2009 case OperationType::DisjointOp:
2010 return Opcode == Instruction::Or;
2011 case OperationType::PossiblyExactOp:
2012 return Opcode == Instruction::AShr;
2013 case OperationType::GEPOp:
2014 return Opcode == Instruction::GetElementPtr ||
2015 Opcode == VPInstruction::PtrAdd ||
2016 Opcode == VPInstruction::WidePtrAdd;
2017 case OperationType::FPMathOp:
2018 return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
2019 Opcode == Instruction::FSub || Opcode == Instruction::FNeg ||
2020 Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
2021 Opcode == Instruction::FCmp || Opcode == Instruction::Select ||
2022 Opcode == VPInstruction::WideIVStep ||
2025 case OperationType::NonNegOp:
2026 return Opcode == Instruction::ZExt;
2027 break;
2028 case OperationType::Cmp:
2029 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2030 case OperationType::Other:
2031 return true;
2032 }
2033 llvm_unreachable("Unknown OperationType enum");
2034}
2035#endif
2036
2037#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2039 switch (OpType) {
2040 case OperationType::Cmp:
2042 break;
2043 case OperationType::DisjointOp:
2044 if (DisjointFlags.IsDisjoint)
2045 O << " disjoint";
2046 break;
2047 case OperationType::PossiblyExactOp:
2048 if (ExactFlags.IsExact)
2049 O << " exact";
2050 break;
2051 case OperationType::OverflowingBinOp:
2052 if (WrapFlags.HasNUW)
2053 O << " nuw";
2054 if (WrapFlags.HasNSW)
2055 O << " nsw";
2056 break;
2057 case OperationType::Trunc:
2058 if (TruncFlags.HasNUW)
2059 O << " nuw";
2060 if (TruncFlags.HasNSW)
2061 O << " nsw";
2062 break;
2063 case OperationType::FPMathOp:
2065 break;
2066 case OperationType::GEPOp:
2067 if (GEPFlags.isInBounds())
2068 O << " inbounds";
2069 else if (GEPFlags.hasNoUnsignedSignedWrap())
2070 O << " nusw";
2071 if (GEPFlags.hasNoUnsignedWrap())
2072 O << " nuw";
2073 break;
2074 case OperationType::NonNegOp:
2075 if (NonNegFlags.NonNeg)
2076 O << " nneg";
2077 break;
2078 case OperationType::Other:
2079 break;
2080 }
2081 O << " ";
2082}
2083#endif
2084
2086 auto &Builder = State.Builder;
2087 switch (Opcode) {
2088 case Instruction::Call:
2089 case Instruction::Br:
2090 case Instruction::PHI:
2091 case Instruction::GetElementPtr:
2092 case Instruction::Select:
2093 llvm_unreachable("This instruction is handled by a different recipe.");
2094 case Instruction::UDiv:
2095 case Instruction::SDiv:
2096 case Instruction::SRem:
2097 case Instruction::URem:
2098 case Instruction::Add:
2099 case Instruction::FAdd:
2100 case Instruction::Sub:
2101 case Instruction::FSub:
2102 case Instruction::FNeg:
2103 case Instruction::Mul:
2104 case Instruction::FMul:
2105 case Instruction::FDiv:
2106 case Instruction::FRem:
2107 case Instruction::Shl:
2108 case Instruction::LShr:
2109 case Instruction::AShr:
2110 case Instruction::And:
2111 case Instruction::Or:
2112 case Instruction::Xor: {
2113 // Just widen unops and binops.
2115 for (VPValue *VPOp : operands())
2116 Ops.push_back(State.get(VPOp));
2117
2118 Value *V = Builder.CreateNAryOp(Opcode, Ops);
2119
2120 if (auto *VecOp = dyn_cast<Instruction>(V)) {
2121 applyFlags(*VecOp);
2122 applyMetadata(*VecOp);
2123 }
2124
2125 // Use this vector value for all users of the original instruction.
2126 State.set(this, V);
2127 break;
2128 }
2129 case Instruction::ExtractValue: {
2130 assert(getNumOperands() == 2 && "expected single level extractvalue");
2131 Value *Op = State.get(getOperand(0));
2133 Value *Extract = Builder.CreateExtractValue(Op, CI->getZExtValue());
2134 State.set(this, Extract);
2135 break;
2136 }
2137 case Instruction::Freeze: {
2138 Value *Op = State.get(getOperand(0));
2139 Value *Freeze = Builder.CreateFreeze(Op);
2140 State.set(this, Freeze);
2141 break;
2142 }
2143 case Instruction::ICmp:
2144 case Instruction::FCmp: {
2145 // Widen compares. Generate vector compares.
2146 bool FCmp = Opcode == Instruction::FCmp;
2147 Value *A = State.get(getOperand(0));
2148 Value *B = State.get(getOperand(1));
2149 Value *C = nullptr;
2150 if (FCmp) {
2151 // Propagate fast math flags.
2152 C = Builder.CreateFCmpFMF(
2153 getPredicate(), A, B,
2155 } else {
2156 C = Builder.CreateICmp(getPredicate(), A, B);
2157 }
2158 if (auto *I = dyn_cast<Instruction>(C))
2159 applyMetadata(*I);
2160 State.set(this, C);
2161 break;
2162 }
2163 default:
2164 // This instruction is not vectorized by simple widening.
2165 LLVM_DEBUG(dbgs() << "LV: Found an unhandled opcode : "
2166 << Instruction::getOpcodeName(Opcode));
2167 llvm_unreachable("Unhandled instruction!");
2168 } // end of switch.
2169
2170#if !defined(NDEBUG)
2171 // Verify that VPlan type inference results agree with the type of the
2172 // generated values.
2173 assert(VectorType::get(State.TypeAnalysis.inferScalarType(this), State.VF) ==
2174 State.get(this)->getType() &&
2175 "inferred type and type from generated instructions do not match");
2176#endif
2177}
2178
2180 VPCostContext &Ctx) const {
2181 switch (Opcode) {
2182 case Instruction::UDiv:
2183 case Instruction::SDiv:
2184 case Instruction::SRem:
2185 case Instruction::URem:
2186 // If the div/rem operation isn't safe to speculate and requires
2187 // predication, then the only way we can even create a vplan is to insert
2188 // a select on the second input operand to ensure we use the value of 1
2189 // for the inactive lanes. The select will be costed separately.
2190 case Instruction::FNeg:
2191 case Instruction::Add:
2192 case Instruction::FAdd:
2193 case Instruction::Sub:
2194 case Instruction::FSub:
2195 case Instruction::Mul:
2196 case Instruction::FMul:
2197 case Instruction::FDiv:
2198 case Instruction::FRem:
2199 case Instruction::Shl:
2200 case Instruction::LShr:
2201 case Instruction::AShr:
2202 case Instruction::And:
2203 case Instruction::Or:
2204 case Instruction::Xor:
2205 case Instruction::Freeze:
2206 case Instruction::ExtractValue:
2207 case Instruction::ICmp:
2208 case Instruction::FCmp:
2209 return getCostForRecipeWithOpcode(getOpcode(), VF, Ctx);
2210 default:
2211 llvm_unreachable("Unsupported opcode for instruction");
2212 }
2213}
2214
2215#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2217 VPSlotTracker &SlotTracker) const {
2218 O << Indent << "WIDEN ";
2220 O << " = " << Instruction::getOpcodeName(Opcode);
2221 printFlags(O);
2223}
2224#endif
2225
2227 auto &Builder = State.Builder;
2228 /// Vectorize casts.
2229 assert(State.VF.isVector() && "Not vectorizing?");
2230 Type *DestTy = VectorType::get(getResultType(), State.VF);
2231 VPValue *Op = getOperand(0);
2232 Value *A = State.get(Op);
2233 Value *Cast = Builder.CreateCast(Instruction::CastOps(Opcode), A, DestTy);
2234 State.set(this, Cast);
2235 if (auto *CastOp = dyn_cast<Instruction>(Cast)) {
2236 applyFlags(*CastOp);
2237 applyMetadata(*CastOp);
2238 }
2239}
2240
2242 VPCostContext &Ctx) const {
2243 // TODO: In some cases, VPWidenCastRecipes are created but not considered in
2244 // the legacy cost model, including truncates/extends when evaluating a
2245 // reduction in a smaller type.
2246 if (!getUnderlyingValue())
2247 return 0;
2248 // Computes the CastContextHint from a recipes that may access memory.
2249 auto ComputeCCH = [&](const VPRecipeBase *R) -> TTI::CastContextHint {
2250 if (VF.isScalar())
2252 if (isa<VPInterleaveBase>(R))
2254 if (const auto *ReplicateRecipe = dyn_cast<VPReplicateRecipe>(R))
2255 return ReplicateRecipe->isPredicated() ? TTI::CastContextHint::Masked
2257 const auto *WidenMemoryRecipe = dyn_cast<VPWidenMemoryRecipe>(R);
2258 if (WidenMemoryRecipe == nullptr)
2260 if (!WidenMemoryRecipe->isConsecutive())
2262 if (WidenMemoryRecipe->isReverse())
2264 if (WidenMemoryRecipe->isMasked())
2267 };
2268
2269 VPValue *Operand = getOperand(0);
2271 // For Trunc/FPTrunc, get the context from the only user.
2272 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2274 if (auto *StoreRecipe = dyn_cast<VPRecipeBase>(*user_begin()))
2275 CCH = ComputeCCH(StoreRecipe);
2276 }
2277 // For Z/Sext, get the context from the operand.
2278 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2279 Opcode == Instruction::FPExt) {
2280 if (Operand->isLiveIn())
2282 else if (Operand->getDefiningRecipe())
2283 CCH = ComputeCCH(Operand->getDefiningRecipe());
2284 }
2285
2286 auto *SrcTy =
2287 cast<VectorType>(toVectorTy(Ctx.Types.inferScalarType(Operand), VF));
2288 auto *DestTy = cast<VectorType>(toVectorTy(getResultType(), VF));
2289 // Arm TTI will use the underlying instruction to determine the cost.
2290 return Ctx.TTI.getCastInstrCost(
2291 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2293}
2294
2295#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2297 VPSlotTracker &SlotTracker) const {
2298 O << Indent << "WIDEN-CAST ";
2300 O << " = " << Instruction::getOpcodeName(Opcode);
2301 printFlags(O);
2303 O << " to " << *getResultType();
2304}
2305#endif
2306
2308 VPCostContext &Ctx) const {
2309 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2310}
2311
2312/// A helper function that returns an integer or floating-point constant with
2313/// value C.
2315 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
2316 : ConstantFP::get(Ty, C);
2317}
2318
2319#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2321 VPSlotTracker &SlotTracker) const {
2322 O << Indent;
2324 O << " = WIDEN-INDUCTION ";
2326
2327 if (auto *TI = getTruncInst())
2328 O << " (truncated to " << *TI->getType() << ")";
2329}
2330#endif
2331
2333 // The step may be defined by a recipe in the preheader (e.g. if it requires
2334 // SCEV expansion), but for the canonical induction the step is required to be
2335 // 1, which is represented as live-in.
2337 return false;
2340 auto *CanIV = cast<VPCanonicalIVPHIRecipe>(&*getParent()->begin());
2341 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2342 getScalarType() == CanIV->getScalarType();
2343}
2344
2345#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2347 VPSlotTracker &SlotTracker) const {
2348 O << Indent;
2350 O << " = DERIVED-IV ";
2351 getStartValue()->printAsOperand(O, SlotTracker);
2352 O << " + ";
2353 getOperand(1)->printAsOperand(O, SlotTracker);
2354 O << " * ";
2355 getStepValue()->printAsOperand(O, SlotTracker);
2356}
2357#endif
2358
2360 // Fast-math-flags propagate from the original induction instruction.
2361 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
2362 if (hasFastMathFlags())
2363 State.Builder.setFastMathFlags(getFastMathFlags());
2364
2365 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2366 /// variable on which to base the steps, \p Step is the size of the step.
2367
2368 Value *BaseIV = State.get(getOperand(0), VPLane(0));
2369 Value *Step = State.get(getStepValue(), VPLane(0));
2370 IRBuilderBase &Builder = State.Builder;
2371
2372 // Ensure step has the same type as that of scalar IV.
2373 Type *BaseIVTy = BaseIV->getType()->getScalarType();
2374 assert(BaseIVTy == Step->getType() && "Types of BaseIV and Step must match!");
2375
2376 // We build scalar steps for both integer and floating-point induction
2377 // variables. Here, we determine the kind of arithmetic we will perform.
2380 if (BaseIVTy->isIntegerTy()) {
2381 AddOp = Instruction::Add;
2382 MulOp = Instruction::Mul;
2383 } else {
2384 AddOp = InductionOpcode;
2385 MulOp = Instruction::FMul;
2386 }
2387
2388 // Determine the number of scalars we need to generate for each unroll
2389 // iteration.
2390 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(this);
2391 // Compute the scalar steps and save the results in State.
2392 Type *IntStepTy =
2393 IntegerType::get(BaseIVTy->getContext(), BaseIVTy->getScalarSizeInBits());
2394 Type *VecIVTy = nullptr;
2395 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2396 if (!FirstLaneOnly && State.VF.isScalable()) {
2397 VecIVTy = VectorType::get(BaseIVTy, State.VF);
2398 UnitStepVec =
2399 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2400 SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2401 SplatIV = Builder.CreateVectorSplat(State.VF, BaseIV);
2402 }
2403
2404 unsigned StartLane = 0;
2405 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2406 if (State.Lane) {
2407 StartLane = State.Lane->getKnownLane();
2408 EndLane = StartLane + 1;
2409 }
2410 Value *StartIdx0;
2411 if (getUnrollPart(*this) == 0)
2412 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2413 else {
2414 StartIdx0 = State.get(getOperand(2), true);
2415 if (getUnrollPart(*this) != 1) {
2416 StartIdx0 =
2417 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->getType(),
2418 getUnrollPart(*this)));
2419 }
2420 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2421 }
2422
2423 if (!FirstLaneOnly && State.VF.isScalable()) {
2424 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2425 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2426 if (BaseIVTy->isFloatingPointTy())
2427 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2428 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2429 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2430 State.set(this, Add);
2431 // It's useful to record the lane values too for the known minimum number
2432 // of elements so we do those below. This improves the code quality when
2433 // trying to extract the first element, for example.
2434 }
2435
2436 if (BaseIVTy->isFloatingPointTy())
2437 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2438
2439 for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2440 Value *StartIdx = Builder.CreateBinOp(
2441 AddOp, StartIdx0, getSignedIntOrFpConstant(BaseIVTy, Lane));
2442 // The step returned by `createStepForVF` is a runtime-evaluated value
2443 // when VF is scalable. Otherwise, it should be folded into a Constant.
2444 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2445 "Expected StartIdx to be folded to a constant when VF is not "
2446 "scalable");
2447 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2448 auto *Add = Builder.CreateBinOp(AddOp, BaseIV, Mul);
2449 State.set(this, Add, VPLane(Lane));
2450 }
2451}
2452
2453#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2455 VPSlotTracker &SlotTracker) const {
2456 O << Indent;
2458 O << " = SCALAR-STEPS ";
2460}
2461#endif
2462
2464 assert(State.VF.isVector() && "not widening");
2466 // Construct a vector GEP by widening the operands of the scalar GEP as
2467 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
2468 // results in a vector of pointers when at least one operand of the GEP
2469 // is vector-typed. Thus, to keep the representation compact, we only use
2470 // vector-typed operands for loop-varying values.
2471
2472 if (areAllOperandsInvariant()) {
2473 // If we are vectorizing, but the GEP has only loop-invariant operands,
2474 // the GEP we build (by only using vector-typed operands for
2475 // loop-varying values) would be a scalar pointer. Thus, to ensure we
2476 // produce a vector of pointers, we need to either arbitrarily pick an
2477 // operand to broadcast, or broadcast a clone of the original GEP.
2478 // Here, we broadcast a clone of the original.
2479 //
2480 // TODO: If at some point we decide to scalarize instructions having
2481 // loop-invariant operands, this special case will no longer be
2482 // required. We would add the scalarization decision to
2483 // collectLoopScalars() and teach getVectorValue() to broadcast
2484 // the lane-zero scalar value.
2486 for (unsigned I = 0, E = getNumOperands(); I != E; I++)
2487 Ops.push_back(State.get(getOperand(I), VPLane(0)));
2488
2489 auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ops[0],
2490 ArrayRef(Ops).drop_front(), "",
2492 Value *Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2493 State.set(this, Splat);
2494 } else {
2495 // If the GEP has at least one loop-varying operand, we are sure to
2496 // produce a vector of pointers unless VF is scalar.
2497 // The pointer operand of the new GEP. If it's loop-invariant, we
2498 // won't broadcast it.
2499 auto *Ptr = isPointerLoopInvariant() ? State.get(getOperand(0), VPLane(0))
2500 : State.get(getOperand(0));
2501
2502 // Collect all the indices for the new GEP. If any index is
2503 // loop-invariant, we won't broadcast it.
2505 for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
2506 VPValue *Operand = getOperand(I);
2507 if (isIndexLoopInvariant(I - 1))
2508 Indices.push_back(State.get(Operand, VPLane(0)));
2509 else
2510 Indices.push_back(State.get(Operand));
2511 }
2512
2513 // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
2514 // but it should be a vector, otherwise.
2515 auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ptr,
2516 Indices, "", getGEPNoWrapFlags());
2517 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2518 "NewGEP is not a pointer vector");
2519 State.set(this, NewGEP);
2520 }
2521}
2522
2523#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2525 VPSlotTracker &SlotTracker) const {
2526 O << Indent << "WIDEN-GEP ";
2527 O << (isPointerLoopInvariant() ? "Inv" : "Var");
2528 for (size_t I = 0; I < getNumOperands() - 1; ++I)
2529 O << "[" << (isIndexLoopInvariant(I) ? "Inv" : "Var") << "]";
2530
2531 O << " ";
2533 O << " = getelementptr";
2534 printFlags(O);
2536}
2537#endif
2538
2539static Type *getGEPIndexTy(bool IsScalable, bool IsReverse, bool IsUnitStride,
2540 unsigned CurrentPart, IRBuilderBase &Builder) {
2541 // Use i32 for the gep index type when the value is constant,
2542 // or query DataLayout for a more suitable index type otherwise.
2543 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2544 return !IsUnitStride || (IsScalable && (IsReverse || CurrentPart > 0))
2545 ? DL.getIndexType(Builder.getPtrTy(0))
2546 : Builder.getInt32Ty();
2547}
2548
2550 auto &Builder = State.Builder;
2551 unsigned CurrentPart = getUnrollPart(*this);
2552 bool IsUnitStride = Stride == 1 || Stride == -1;
2553 Type *IndexTy = getGEPIndexTy(State.VF.isScalable(), /*IsReverse*/ true,
2554 IsUnitStride, CurrentPart, Builder);
2555
2556 // The wide store needs to start at the last vector element.
2557 Value *RunTimeVF = State.get(getVFValue(), VPLane(0));
2558 if (IndexTy != RunTimeVF->getType())
2559 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2560 // NumElt = Stride * CurrentPart * RunTimeVF
2561 Value *NumElt = Builder.CreateMul(
2562 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2563 // LastLane = Stride * (RunTimeVF - 1)
2564 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2565 if (Stride != 1)
2566 LastLane = Builder.CreateMul(ConstantInt::get(IndexTy, Stride), LastLane);
2567 Value *Ptr = State.get(getOperand(0), VPLane(0));
2568 Value *ResultPtr =
2569 Builder.CreateGEP(IndexedTy, Ptr, NumElt, "", getGEPNoWrapFlags());
2570 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane, "",
2572
2573 State.set(this, ResultPtr, /*IsScalar*/ true);
2574}
2575
2576#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2578 VPSlotTracker &SlotTracker) const {
2579 O << Indent;
2581 O << " = vector-end-pointer";
2582 printFlags(O);
2584}
2585#endif
2586
2588 auto &Builder = State.Builder;
2589 unsigned CurrentPart = getUnrollPart(*this);
2590 Type *IndexTy = getGEPIndexTy(State.VF.isScalable(), /*IsReverse*/ false,
2591 /*IsUnitStride*/ true, CurrentPart, Builder);
2592 Value *Ptr = State.get(getOperand(0), VPLane(0));
2593
2594 Value *Increment = createStepForVF(Builder, IndexTy, State.VF, CurrentPart);
2595 Value *ResultPtr =
2596 Builder.CreateGEP(IndexedTy, Ptr, Increment, "", getGEPNoWrapFlags());
2597
2598 State.set(this, ResultPtr, /*IsScalar*/ true);
2599}
2600
2601#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2603 VPSlotTracker &SlotTracker) const {
2604 O << Indent;
2606 O << " = vector-pointer ";
2607
2609}
2610#endif
2611
2613 VPCostContext &Ctx) const {
2614 // Handle cases where only the first lane is used the same way as the legacy
2615 // cost model.
2617 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2618
2619 Type *ResultTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
2620 Type *CmpTy = toVectorTy(Type::getInt1Ty(Ctx.Types.getContext()), VF);
2621 return (getNumIncomingValues() - 1) *
2622 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2623 CmpInst::BAD_ICMP_PREDICATE, Ctx.CostKind);
2624}
2625
2626#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2628 VPSlotTracker &SlotTracker) const {
2629 O << Indent << "BLEND ";
2631 O << " =";
2632 if (getNumIncomingValues() == 1) {
2633 // Not a User of any mask: not really blending, this is a
2634 // single-predecessor phi.
2635 O << " ";
2636 getIncomingValue(0)->printAsOperand(O, SlotTracker);
2637 } else {
2638 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
2639 O << " ";
2640 getIncomingValue(I)->printAsOperand(O, SlotTracker);
2641 if (I == 0)
2642 continue;
2643 O << "/";
2644 getMask(I)->printAsOperand(O, SlotTracker);
2645 }
2646 }
2647}
2648#endif
2649
2651 assert(!State.Lane && "Reduction being replicated.");
2652 Value *PrevInChain = State.get(getChainOp(), /*IsScalar*/ true);
2655 "In-loop AnyOf reductions aren't currently supported");
2656 // Propagate the fast-math flags carried by the underlying instruction.
2657 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
2658 State.Builder.setFastMathFlags(getFastMathFlags());
2659 Value *NewVecOp = State.get(getVecOp());
2660 if (VPValue *Cond = getCondOp()) {
2661 Value *NewCond = State.get(Cond, State.VF.isScalar());
2662 VectorType *VecTy = dyn_cast<VectorType>(NewVecOp->getType());
2663 Type *ElementTy = VecTy ? VecTy->getElementType() : NewVecOp->getType();
2664
2665 Value *Start = getRecurrenceIdentity(Kind, ElementTy, getFastMathFlags());
2666 if (State.VF.isVector())
2667 Start = State.Builder.CreateVectorSplat(VecTy->getElementCount(), Start);
2668
2669 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2670 NewVecOp = Select;
2671 }
2672 Value *NewRed;
2673 Value *NextInChain;
2674 if (IsOrdered) {
2675 if (State.VF.isVector())
2676 NewRed =
2677 createOrderedReduction(State.Builder, Kind, NewVecOp, PrevInChain);
2678 else
2679 NewRed = State.Builder.CreateBinOp(
2681 PrevInChain, NewVecOp);
2682 PrevInChain = NewRed;
2683 NextInChain = NewRed;
2684 } else {
2685 PrevInChain = State.get(getChainOp(), /*IsScalar*/ true);
2686 NewRed = createSimpleReduction(State.Builder, NewVecOp, Kind);
2688 NextInChain = createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2689 else
2690 NextInChain = State.Builder.CreateBinOp(
2692 PrevInChain, NewRed);
2693 }
2694 State.set(this, NextInChain, /*IsScalar*/ true);
2695}
2696
2698 assert(!State.Lane && "Reduction being replicated.");
2699
2700 auto &Builder = State.Builder;
2701 // Propagate the fast-math flags carried by the underlying instruction.
2702 IRBuilderBase::FastMathFlagGuard FMFGuard(Builder);
2703 Builder.setFastMathFlags(getFastMathFlags());
2704
2706 Value *Prev = State.get(getChainOp(), /*IsScalar*/ true);
2707 Value *VecOp = State.get(getVecOp());
2708 Value *EVL = State.get(getEVL(), VPLane(0));
2709
2710 Value *Mask;
2711 if (VPValue *CondOp = getCondOp())
2712 Mask = State.get(CondOp);
2713 else
2714 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2715
2716 Value *NewRed;
2717 if (isOrdered()) {
2718 NewRed = createOrderedReduction(Builder, Kind, VecOp, Prev, Mask, EVL);
2719 } else {
2720 NewRed = createSimpleReduction(Builder, VecOp, Kind, Mask, EVL);
2722 NewRed = createMinMaxOp(Builder, Kind, NewRed, Prev);
2723 else
2724 NewRed = Builder.CreateBinOp(
2726 Prev);
2727 }
2728 State.set(this, NewRed, /*IsScalar*/ true);
2729}
2730
2732 VPCostContext &Ctx) const {
2733 RecurKind RdxKind = getRecurrenceKind();
2734 Type *ElementTy = Ctx.Types.inferScalarType(this);
2735 auto *VectorTy = cast<VectorType>(toVectorTy(ElementTy, VF));
2736 unsigned Opcode = RecurrenceDescriptor::getOpcode(RdxKind);
2738 std::optional<FastMathFlags> OptionalFMF =
2739 ElementTy->isFloatingPointTy() ? std::make_optional(FMFs) : std::nullopt;
2740
2741 // TODO: Support any-of reductions.
2742 assert(
2744 ForceTargetInstructionCost.getNumOccurrences() > 0) &&
2745 "Any-of reduction not implemented in VPlan-based cost model currently.");
2746
2747 // Note that TTI should model the cost of moving result to the scalar register
2748 // and the BinOp cost in the getMinMaxReductionCost().
2751 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy, FMFs, Ctx.CostKind);
2752 }
2753
2754 // Note that TTI should model the cost of moving result to the scalar register
2755 // and the BinOp cost in the getArithmeticReductionCost().
2756 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2757 Ctx.CostKind);
2758}
2759
2761 ExpressionTypes ExpressionType,
2762 ArrayRef<VPSingleDefRecipe *> ExpressionRecipes)
2763 : VPSingleDefRecipe(VPDef::VPExpressionSC, {}, {}),
2764 ExpressionRecipes(SetVector<VPSingleDefRecipe *>(
2765 ExpressionRecipes.begin(), ExpressionRecipes.end())
2766 .takeVector()),
2767 ExpressionType(ExpressionType) {
2768 assert(!ExpressionRecipes.empty() && "Nothing to combine?");
2769 assert(
2770 none_of(ExpressionRecipes,
2771 [](VPSingleDefRecipe *R) { return R->mayHaveSideEffects(); }) &&
2772 "expression cannot contain recipes with side-effects");
2773
2774 // Maintain a copy of the expression recipes as a set of users.
2775 SmallPtrSet<VPUser *, 4> ExpressionRecipesAsSetOfUsers;
2776 for (auto *R : ExpressionRecipes)
2777 ExpressionRecipesAsSetOfUsers.insert(R);
2778
2779 // Recipes in the expression, except the last one, must only be used by
2780 // (other) recipes inside the expression. If there are other users, external
2781 // to the expression, use a clone of the recipe for external users.
2782 for (VPSingleDefRecipe *R : ExpressionRecipes) {
2783 if (R != ExpressionRecipes.back() &&
2784 any_of(R->users(), [&ExpressionRecipesAsSetOfUsers](VPUser *U) {
2785 return !ExpressionRecipesAsSetOfUsers.contains(U);
2786 })) {
2787 // There are users outside of the expression. Clone the recipe and use the
2788 // clone those external users.
2789 VPSingleDefRecipe *CopyForExtUsers = R->clone();
2790 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2791 VPUser &U, unsigned) {
2792 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2793 });
2794 CopyForExtUsers->insertBefore(R);
2795 }
2796 if (R->getParent())
2797 R->removeFromParent();
2798 }
2799
2800 // Internalize all external operands to the expression recipes. To do so,
2801 // create new temporary VPValues for all operands defined by a recipe outside
2802 // the expression. The original operands are added as operands of the
2803 // VPExpressionRecipe itself.
2804 for (auto *R : ExpressionRecipes) {
2805 for (const auto &[Idx, Op] : enumerate(R->operands())) {
2806 auto *Def = Op->getDefiningRecipe();
2807 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2808 continue;
2809 addOperand(Op);
2810 LiveInPlaceholders.push_back(new VPValue());
2811 R->setOperand(Idx, LiveInPlaceholders.back());
2812 }
2813 }
2814}
2815
2817 for (auto *R : ExpressionRecipes)
2818 R->insertBefore(this);
2819
2820 for (const auto &[Idx, Op] : enumerate(operands()))
2821 LiveInPlaceholders[Idx]->replaceAllUsesWith(Op);
2822
2823 replaceAllUsesWith(ExpressionRecipes.back());
2824 ExpressionRecipes.clear();
2825}
2826
2828 VPCostContext &Ctx) const {
2829 Type *RedTy = Ctx.Types.inferScalarType(this);
2830 auto *SrcVecTy = cast<VectorType>(
2831 toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF));
2832 assert(RedTy->isIntegerTy() &&
2833 "VPExpressionRecipe only supports integer types currently.");
2834 unsigned Opcode = RecurrenceDescriptor::getOpcode(
2835 cast<VPReductionRecipe>(ExpressionRecipes.back())->getRecurrenceKind());
2836 switch (ExpressionType) {
2837 case ExpressionTypes::ExtendedReduction: {
2838 return Ctx.TTI.getExtendedReductionCost(
2839 Opcode,
2840 cast<VPWidenCastRecipe>(ExpressionRecipes.front())->getOpcode() ==
2841 Instruction::ZExt,
2842 RedTy, SrcVecTy, std::nullopt, Ctx.CostKind);
2843 }
2844 case ExpressionTypes::MulAccReduction:
2845 return Ctx.TTI.getMulAccReductionCost(false, Opcode, RedTy, SrcVecTy,
2846 Ctx.CostKind);
2847
2848 case ExpressionTypes::ExtMulAccReduction:
2849 return Ctx.TTI.getMulAccReductionCost(
2850 cast<VPWidenCastRecipe>(ExpressionRecipes.front())->getOpcode() ==
2851 Instruction::ZExt,
2852 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2853 }
2854 llvm_unreachable("Unknown VPExpressionRecipe::ExpressionTypes enum");
2855}
2856
2858 return any_of(ExpressionRecipes, [](VPSingleDefRecipe *R) {
2859 return R->mayReadFromMemory() || R->mayWriteToMemory();
2860 });
2861}
2862
2864 assert(
2865 none_of(ExpressionRecipes,
2866 [](VPSingleDefRecipe *R) { return R->mayHaveSideEffects(); }) &&
2867 "expression cannot contain recipes with side-effects");
2868 return false;
2869}
2870
2871#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2872
2874 VPSlotTracker &SlotTracker) const {
2875 O << Indent << "EXPRESSION ";
2877 O << " = ";
2878 auto *Red = cast<VPReductionRecipe>(ExpressionRecipes.back());
2879 unsigned Opcode = RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind());
2880
2881 switch (ExpressionType) {
2882 case ExpressionTypes::ExtendedReduction: {
2884 O << " +";
2885 O << " reduce." << Instruction::getOpcodeName(Opcode) << " (";
2887 Red->printFlags(O);
2888
2889 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2890 O << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2891 << *Ext0->getResultType();
2892 if (Red->isConditional()) {
2893 O << ", ";
2894 Red->getCondOp()->printAsOperand(O, SlotTracker);
2895 }
2896 O << ")";
2897 break;
2898 }
2899 case ExpressionTypes::MulAccReduction:
2900 case ExpressionTypes::ExtMulAccReduction: {
2902 O << " + ";
2903 O << "reduce."
2905 RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind()))
2906 << " (";
2907 O << "mul";
2908 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2909 auto *Mul = cast<VPWidenRecipe>(IsExtended ? ExpressionRecipes[2]
2910 : ExpressionRecipes[0]);
2911 Mul->printFlags(O);
2912 if (IsExtended)
2913 O << "(";
2915 if (IsExtended) {
2916 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2917 O << " " << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2918 << *Ext0->getResultType() << "), (";
2919 } else {
2920 O << ", ";
2921 }
2923 if (IsExtended) {
2924 auto *Ext1 = cast<VPWidenCastRecipe>(ExpressionRecipes[1]);
2925 O << " " << Instruction::getOpcodeName(Ext1->getOpcode()) << " to "
2926 << *Ext1->getResultType() << ")";
2927 }
2928 if (Red->isConditional()) {
2929 O << ", ";
2930 Red->getCondOp()->printAsOperand(O, SlotTracker);
2931 }
2932 O << ")";
2933 break;
2934 }
2935 }
2936}
2937
2939 VPSlotTracker &SlotTracker) const {
2940 O << Indent << "REDUCE ";
2942 O << " = ";
2944 O << " +";
2945 printFlags(O);
2946 O << " reduce."
2949 << " (";
2951 if (isConditional()) {
2952 O << ", ";
2954 }
2955 O << ")";
2956}
2957
2959 VPSlotTracker &SlotTracker) const {
2960 O << Indent << "REDUCE ";
2962 O << " = ";
2964 O << " +";
2965 printFlags(O);
2966 O << " vp.reduce."
2969 << " (";
2971 O << ", ";
2973 if (isConditional()) {
2974 O << ", ";
2976 }
2977 O << ")";
2978}
2979
2980#endif
2981
2982/// A helper function to scalarize a single Instruction in the innermost loop.
2983/// Generates a sequence of scalar instances for lane \p Lane. Uses the VPValue
2984/// operands from \p RepRecipe instead of \p Instr's operands.
2985static void scalarizeInstruction(const Instruction *Instr,
2986 VPReplicateRecipe *RepRecipe,
2987 const VPLane &Lane, VPTransformState &State) {
2988 assert((!Instr->getType()->isAggregateType() ||
2989 canVectorizeTy(Instr->getType())) &&
2990 "Expected vectorizable or non-aggregate type.");
2991
2992 // Does this instruction return a value ?
2993 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2994
2995 Instruction *Cloned = Instr->clone();
2996 if (!IsVoidRetTy) {
2997 Cloned->setName(Instr->getName() + ".cloned");
2998 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
2999 // The operands of the replicate recipe may have been narrowed, resulting in
3000 // a narrower result type. Update the type of the cloned instruction to the
3001 // correct type.
3002 if (ResultTy != Cloned->getType())
3003 Cloned->mutateType(ResultTy);
3004 }
3005
3006 RepRecipe->applyFlags(*Cloned);
3007 RepRecipe->applyMetadata(*Cloned);
3008
3009 if (RepRecipe->hasPredicate())
3010 cast<CmpInst>(Cloned)->setPredicate(RepRecipe->getPredicate());
3011
3012 if (auto DL = RepRecipe->getDebugLoc())
3013 State.setDebugLocFrom(DL);
3014
3015 // Replace the operands of the cloned instructions with their scalar
3016 // equivalents in the new loop.
3017 for (const auto &I : enumerate(RepRecipe->operands())) {
3018 auto InputLane = Lane;
3019 VPValue *Operand = I.value();
3020 if (vputils::isSingleScalar(Operand))
3021 InputLane = VPLane::getFirstLane();
3022 Cloned->setOperand(I.index(), State.get(Operand, InputLane));
3023 }
3024
3025 // Place the cloned scalar in the new loop.
3026 State.Builder.Insert(Cloned);
3027
3028 State.set(RepRecipe, Cloned, Lane);
3029
3030 // If we just cloned a new assumption, add it the assumption cache.
3031 if (auto *II = dyn_cast<AssumeInst>(Cloned))
3032 State.AC->registerAssumption(II);
3033
3034 assert(
3035 (RepRecipe->getParent()->getParent() ||
3036 !RepRecipe->getParent()->getPlan()->getVectorLoopRegion() ||
3037 all_of(RepRecipe->operands(),
3038 [](VPValue *Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3039 "Expected a recipe is either within a region or all of its operands "
3040 "are defined outside the vectorized region.");
3041}
3042
3045
3046 if (!State.Lane) {
3047 assert(IsSingleScalar && "VPReplicateRecipes outside replicate regions "
3048 "must have already been unrolled");
3049 scalarizeInstruction(UI, this, VPLane(0), State);
3050 return;
3051 }
3052
3053 assert((State.VF.isScalar() || !isSingleScalar()) &&
3054 "uniform recipe shouldn't be predicated");
3055 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
3056 scalarizeInstruction(UI, this, *State.Lane, State);
3057 // Insert scalar instance packing it into a vector.
3058 if (State.VF.isVector() && shouldPack()) {
3059 Value *WideValue =
3060 State.Lane->isFirstLane()
3061 ? PoisonValue::get(VectorType::get(UI->getType(), State.VF))
3062 : State.get(this);
3063 State.set(this, State.packScalarIntoVectorizedValue(this, WideValue,
3064 *State.Lane));
3065 }
3066}
3067
3069 // Find if the recipe is used by a widened recipe via an intervening
3070 // VPPredInstPHIRecipe. In this case, also pack the scalar values in a vector.
3071 return any_of(users(), [](const VPUser *U) {
3072 if (auto *PredR = dyn_cast<VPPredInstPHIRecipe>(U))
3073 return !vputils::onlyScalarValuesUsed(PredR);
3074 return false;
3075 });
3076}
3077
3079 VPCostContext &Ctx) const {
3081 // VPReplicateRecipe may be cloned as part of an existing VPlan-to-VPlan
3082 // transform, avoid computing their cost multiple times for now.
3083 Ctx.SkipCostComputation.insert(UI);
3084
3085 switch (UI->getOpcode()) {
3086 case Instruction::GetElementPtr:
3087 // We mark this instruction as zero-cost because the cost of GEPs in
3088 // vectorized code depends on whether the corresponding memory instruction
3089 // is scalarized or not. Therefore, we handle GEPs with the memory
3090 // instruction cost.
3091 return 0;
3092 case Instruction::Call: {
3093 auto *CalledFn =
3095
3098 for (const VPValue *ArgOp : ArgOps)
3099 Tys.push_back(Ctx.Types.inferScalarType(ArgOp));
3100
3101 if (CalledFn->isIntrinsic())
3102 // Various pseudo-intrinsics with costs of 0 are scalarized instead of
3103 // vectorized via VPWidenIntrinsicRecipe. Return 0 for them early.
3104 switch (CalledFn->getIntrinsicID()) {
3105 case Intrinsic::assume:
3106 case Intrinsic::lifetime_end:
3107 case Intrinsic::lifetime_start:
3108 case Intrinsic::sideeffect:
3109 case Intrinsic::pseudoprobe:
3110 case Intrinsic::experimental_noalias_scope_decl: {
3111 assert(getCostForIntrinsics(CalledFn->getIntrinsicID(), ArgOps, *this,
3112 ElementCount::getFixed(1), Ctx) == 0 &&
3113 "scalarizing intrinsic should be free");
3114 return InstructionCost(0);
3115 }
3116 default:
3117 break;
3118 }
3119
3120 Type *ResultTy = Ctx.Types.inferScalarType(this);
3121 InstructionCost ScalarCallCost =
3122 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3123 if (isSingleScalar()) {
3124 if (CalledFn->isIntrinsic())
3125 ScalarCallCost = std::min(
3126 ScalarCallCost,
3127 getCostForIntrinsics(CalledFn->getIntrinsicID(), ArgOps, *this,
3128 ElementCount::getFixed(1), Ctx));
3129 return ScalarCallCost;
3130 }
3131
3132 if (VF.isScalable())
3134
3135 return ScalarCallCost * VF.getFixedValue() +
3136 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3137 }
3138 case Instruction::Add:
3139 case Instruction::Sub:
3140 case Instruction::FAdd:
3141 case Instruction::FSub:
3142 case Instruction::Mul:
3143 case Instruction::FMul:
3144 case Instruction::FDiv:
3145 case Instruction::FRem:
3146 case Instruction::Shl:
3147 case Instruction::LShr:
3148 case Instruction::AShr:
3149 case Instruction::And:
3150 case Instruction::Or:
3151 case Instruction::Xor:
3152 case Instruction::ICmp:
3153 case Instruction::FCmp:
3155 Ctx) *
3156 (isSingleScalar() ? 1 : VF.getFixedValue());
3157 case Instruction::SDiv:
3158 case Instruction::UDiv:
3159 case Instruction::SRem:
3160 case Instruction::URem: {
3161 InstructionCost ScalarCost =
3163 if (isSingleScalar())
3164 return ScalarCost;
3165
3166 return ScalarCost * VF.getFixedValue() +
3167 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(this),
3168 to_vector(operands()), VF);
3169 }
3170 case Instruction::Load:
3171 case Instruction::Store: {
3172 if (isSingleScalar()) {
3173 bool IsLoad = UI->getOpcode() == Instruction::Load;
3174 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ? this : getOperand(0));
3175 Type *ScalarPtrTy = Ctx.Types.inferScalarType(getOperand(IsLoad ? 0 : 1));
3176 const Align Alignment = getLoadStoreAlignment(UI);
3177 unsigned AS = getLoadStoreAddressSpace(UI);
3179 InstructionCost ScalarMemOpCost = Ctx.TTI.getMemoryOpCost(
3180 UI->getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo, UI);
3181 return ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3182 ScalarPtrTy, nullptr, nullptr, Ctx.CostKind);
3183 }
3184 // TODO: See getMemInstScalarizationCost for how to handle replicating and
3185 // predicated cases.
3186 break;
3187 }
3188 }
3189
3190 return Ctx.getLegacyCost(UI, VF);
3191}
3192
3193#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3195 VPSlotTracker &SlotTracker) const {
3196 O << Indent << (IsSingleScalar ? "CLONE " : "REPLICATE ");
3197
3198 if (!getUnderlyingInstr()->getType()->isVoidTy()) {
3200 O << " = ";
3201 }
3202 if (auto *CB = dyn_cast<CallBase>(getUnderlyingInstr())) {
3203 O << "call";
3204 printFlags(O);
3205 O << "@" << CB->getCalledFunction()->getName() << "(";
3207 O, [&O, &SlotTracker](VPValue *Op) {
3208 Op->printAsOperand(O, SlotTracker);
3209 });
3210 O << ")";
3211 } else {
3213 printFlags(O);
3215 }
3216
3217 if (shouldPack())
3218 O << " (S->V)";
3219}
3220#endif
3221
3223 assert(State.Lane && "Branch on Mask works only on single instance.");
3224
3225 VPValue *BlockInMask = getOperand(0);
3226 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3227
3228 // Replace the temporary unreachable terminator with a new conditional branch,
3229 // whose two destinations will be set later when they are created.
3230 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3231 assert(isa<UnreachableInst>(CurrentTerminator) &&
3232 "Expected to replace unreachable terminator with conditional branch.");
3233 auto CondBr =
3234 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB, nullptr);
3235 CondBr->setSuccessor(0, nullptr);
3236 CurrentTerminator->eraseFromParent();
3237}
3238
3240 VPCostContext &Ctx) const {
3241 // The legacy cost model doesn't assign costs to branches for individual
3242 // replicate regions. Match the current behavior in the VPlan cost model for
3243 // now.
3244 return 0;
3245}
3246
3248 assert(State.Lane && "Predicated instruction PHI works per instance.");
3249 Instruction *ScalarPredInst =
3250 cast<Instruction>(State.get(getOperand(0), *State.Lane));
3251 BasicBlock *PredicatedBB = ScalarPredInst->getParent();
3252 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
3253 assert(PredicatingBB && "Predicated block has no single predecessor.");
3255 "operand must be VPReplicateRecipe");
3256
3257 // By current pack/unpack logic we need to generate only a single phi node: if
3258 // a vector value for the predicated instruction exists at this point it means
3259 // the instruction has vector users only, and a phi for the vector value is
3260 // needed. In this case the recipe of the predicated instruction is marked to
3261 // also do that packing, thereby "hoisting" the insert-element sequence.
3262 // Otherwise, a phi node for the scalar value is needed.
3263 if (State.hasVectorValue(getOperand(0))) {
3264 Value *VectorValue = State.get(getOperand(0));
3265 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
3266 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
3267 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
3268 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
3269 if (State.hasVectorValue(this))
3270 State.reset(this, VPhi);
3271 else
3272 State.set(this, VPhi);
3273 // NOTE: Currently we need to update the value of the operand, so the next
3274 // predicated iteration inserts its generated value in the correct vector.
3275 State.reset(getOperand(0), VPhi);
3276 } else {
3277 if (vputils::onlyFirstLaneUsed(this) && !State.Lane->isFirstLane())
3278 return;
3279
3280 Type *PredInstType = State.TypeAnalysis.inferScalarType(getOperand(0));
3281 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3282 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
3283 PredicatingBB);
3284 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3285 if (State.hasScalarValue(this, *State.Lane))
3286 State.reset(this, Phi, *State.Lane);
3287 else
3288 State.set(this, Phi, *State.Lane);
3289 // NOTE: Currently we need to update the value of the operand, so the next
3290 // predicated iteration inserts its generated value in the correct vector.
3291 State.reset(getOperand(0), Phi, *State.Lane);
3292 }
3293}
3294
3295#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3297 VPSlotTracker &SlotTracker) const {
3298 O << Indent << "PHI-PREDICATED-INSTRUCTION ";
3300 O << " = ";
3302}
3303#endif
3304
3306 VPCostContext &Ctx) const {
3308 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3309 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
3310 ->getAddressSpace();
3311 unsigned Opcode = isa<VPWidenLoadRecipe, VPWidenLoadEVLRecipe>(this)
3312 ? Instruction::Load
3313 : Instruction::Store;
3314
3315 if (!Consecutive) {
3316 // TODO: Using the original IR may not be accurate.
3317 // Currently, ARM will use the underlying IR to calculate gather/scatter
3318 // instruction cost.
3319 assert(!Reverse &&
3320 "Inconsecutive memory access should not have the order.");
3321
3323 Type *PtrTy = Ptr->getType();
3324
3325 // If the address value is uniform across all lanes, then the address can be
3326 // calculated with scalar type and broadcast.
3328 PtrTy = toVectorTy(PtrTy, VF);
3329
3330 return Ctx.TTI.getAddressComputationCost(PtrTy, nullptr, nullptr,
3331 Ctx.CostKind) +
3332 Ctx.TTI.getGatherScatterOpCost(Opcode, Ty, Ptr, IsMasked, Alignment,
3333 Ctx.CostKind, &Ingredient);
3334 }
3335
3337 if (IsMasked) {
3338 Cost +=
3339 Ctx.TTI.getMaskedMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind);
3340 } else {
3341 TTI::OperandValueInfo OpInfo = Ctx.getOperandInfo(
3343 : getOperand(1));
3344 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind,
3345 OpInfo, &Ingredient);
3346 }
3347 if (!Reverse)
3348 return Cost;
3349
3350 return Cost += Ctx.TTI.getShuffleCost(
3352 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3353}
3354
3356 Type *ScalarDataTy = getLoadStoreType(&Ingredient);
3357 auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
3358 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3359 bool CreateGather = !isConsecutive();
3360
3361 auto &Builder = State.Builder;
3362 Value *Mask = nullptr;
3363 if (auto *VPMask = getMask()) {
3364 // Mask reversal is only needed for non-all-one (null) masks, as reverse
3365 // of a null all-one mask is a null mask.
3366 Mask = State.get(VPMask);
3367 if (isReverse())
3368 Mask = Builder.CreateVectorReverse(Mask, "reverse");
3369 }
3370
3371 Value *Addr = State.get(getAddr(), /*IsScalar*/ !CreateGather);
3372 Value *NewLI;
3373 if (CreateGather) {
3374 NewLI = Builder.CreateMaskedGather(DataTy, Addr, Alignment, Mask, nullptr,
3375 "wide.masked.gather");
3376 } else if (Mask) {
3377 NewLI =
3378 Builder.CreateMaskedLoad(DataTy, Addr, Alignment, Mask,
3379 PoisonValue::get(DataTy), "wide.masked.load");
3380 } else {
3381 NewLI = Builder.CreateAlignedLoad(DataTy, Addr, Alignment, "wide.load");
3382 }
3384 if (Reverse)
3385 NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
3386 State.set(this, NewLI);
3387}
3388
3389#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3391 VPSlotTracker &SlotTracker) const {
3392 O << Indent << "WIDEN ";
3394 O << " = load ";
3396}
3397#endif
3398
3399/// Use all-true mask for reverse rather than actual mask, as it avoids a
3400/// dependence w/o affecting the result.
3402 Value *EVL, const Twine &Name) {
3403 VectorType *ValTy = cast<VectorType>(Operand->getType());
3404 Value *AllTrueMask =
3405 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3406 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3407 {Operand, AllTrueMask, EVL}, nullptr, Name);
3408}
3409
3411 Type *ScalarDataTy = getLoadStoreType(&Ingredient);
3412 auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
3413 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3414 bool CreateGather = !isConsecutive();
3415
3416 auto &Builder = State.Builder;
3417 CallInst *NewLI;
3418 Value *EVL = State.get(getEVL(), VPLane(0));
3419 Value *Addr = State.get(getAddr(), !CreateGather);
3420 Value *Mask = nullptr;
3421 if (VPValue *VPMask = getMask()) {
3422 Mask = State.get(VPMask);
3423 if (isReverse())
3424 Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask");
3425 } else {
3426 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3427 }
3428
3429 if (CreateGather) {
3430 NewLI =
3431 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3432 nullptr, "wide.masked.gather");
3433 } else {
3434 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3435 {Addr, Mask, EVL}, nullptr, "vp.op.load");
3436 }
3437 NewLI->addParamAttr(
3438 0, Attribute::getWithAlignment(NewLI->getContext(), Alignment));
3439 applyMetadata(*NewLI);
3440 Instruction *Res = NewLI;
3441 if (isReverse())
3442 Res = createReverseEVL(Builder, Res, EVL, "vp.reverse");
3443 State.set(this, Res);
3444}
3445
3447 VPCostContext &Ctx) const {
3448 if (!Consecutive || IsMasked)
3449 return VPWidenMemoryRecipe::computeCost(VF, Ctx);
3450
3451 // We need to use the getMaskedMemoryOpCost() instead of getMemoryOpCost()
3452 // here because the EVL recipes using EVL to replace the tail mask. But in the
3453 // legacy model, it will always calculate the cost of mask.
3454 // TODO: Using getMemoryOpCost() instead of getMaskedMemoryOpCost when we
3455 // don't need to compare to the legacy cost model.
3457 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3458 unsigned AS = getLoadStoreAddressSpace(&Ingredient);
3459 InstructionCost Cost = Ctx.TTI.getMaskedMemoryOpCost(
3460 Instruction::Load, Ty, Alignment, AS, Ctx.CostKind);
3461 if (!Reverse)
3462 return Cost;
3463
3464 return Cost + Ctx.TTI.getShuffleCost(
3466 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3467}
3468
3469#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3471 VPSlotTracker &SlotTracker) const {
3472 O << Indent << "WIDEN ";
3474 O << " = vp.load ";
3476}
3477#endif
3478
3480 VPValue *StoredVPValue = getStoredValue();
3481 bool CreateScatter = !isConsecutive();
3482 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3483
3484 auto &Builder = State.Builder;
3485
3486 Value *Mask = nullptr;
3487 if (auto *VPMask = getMask()) {
3488 // Mask reversal is only needed for non-all-one (null) masks, as reverse
3489 // of a null all-one mask is a null mask.
3490 Mask = State.get(VPMask);
3491 if (isReverse())
3492 Mask = Builder.CreateVectorReverse(Mask, "reverse");
3493 }
3494
3495 Value *StoredVal = State.get(StoredVPValue);
3496 if (isReverse()) {
3497 // If we store to reverse consecutive memory locations, then we need
3498 // to reverse the order of elements in the stored value.
3499 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
3500 // We don't want to update the value in the map as it might be used in
3501 // another expression. So don't call resetVectorValue(StoredVal).
3502 }
3503 Value *Addr = State.get(getAddr(), /*IsScalar*/ !CreateScatter);
3504 Instruction *NewSI = nullptr;
3505 if (CreateScatter)
3506 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr, Alignment, Mask);
3507 else if (Mask)
3508 NewSI = Builder.CreateMaskedStore(StoredVal, Addr, Alignment, Mask);
3509 else
3510 NewSI = Builder.CreateAlignedStore(StoredVal, Addr, Alignment);
3511 applyMetadata(*NewSI);
3512}
3513
3514#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3516 VPSlotTracker &SlotTracker) const {
3517 O << Indent << "WIDEN store ";
3519}
3520#endif
3521
3523 VPValue *StoredValue = getStoredValue();
3524 bool CreateScatter = !isConsecutive();
3525 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3526
3527 auto &Builder = State.Builder;
3528
3529 CallInst *NewSI = nullptr;
3530 Value *StoredVal = State.get(StoredValue);
3531 Value *EVL = State.get(getEVL(), VPLane(0));
3532 if (isReverse())
3533 StoredVal = createReverseEVL(Builder, StoredVal, EVL, "vp.reverse");
3534 Value *Mask = nullptr;
3535 if (VPValue *VPMask = getMask()) {
3536 Mask = State.get(VPMask);
3537 if (isReverse())
3538 Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask");
3539 } else {
3540 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3541 }
3542 Value *Addr = State.get(getAddr(), !CreateScatter);
3543 if (CreateScatter) {
3544 NewSI = Builder.CreateIntrinsic(Type::getVoidTy(EVL->getContext()),
3545 Intrinsic::vp_scatter,
3546 {StoredVal, Addr, Mask, EVL});
3547 } else {
3548 NewSI = Builder.CreateIntrinsic(Type::getVoidTy(EVL->getContext()),
3549 Intrinsic::vp_store,
3550 {StoredVal, Addr, Mask, EVL});
3551 }
3552 NewSI->addParamAttr(
3553 1, Attribute::getWithAlignment(NewSI->getContext(), Alignment));
3554 applyMetadata(*NewSI);
3555}
3556
3558 VPCostContext &Ctx) const {
3559 if (!Consecutive || IsMasked)
3560 return VPWidenMemoryRecipe::computeCost(VF, Ctx);
3561
3562 // We need to use the getMaskedMemoryOpCost() instead of getMemoryOpCost()
3563 // here because the EVL recipes using EVL to replace the tail mask. But in the
3564 // legacy model, it will always calculate the cost of mask.
3565 // TODO: Using getMemoryOpCost() instead of getMaskedMemoryOpCost when we
3566 // don't need to compare to the legacy cost model.
3568 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3569 unsigned AS = getLoadStoreAddressSpace(&Ingredient);
3570 InstructionCost Cost = Ctx.TTI.getMaskedMemoryOpCost(
3571 Instruction::Store, Ty, Alignment, AS, Ctx.CostKind);
3572 if (!Reverse)
3573 return Cost;
3574
3575 return Cost + Ctx.TTI.getShuffleCost(
3577 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3578}
3579
3580#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3582 VPSlotTracker &SlotTracker) const {
3583 O << Indent << "WIDEN vp.store ";
3585}
3586#endif
3587
3589 VectorType *DstVTy, const DataLayout &DL) {
3590 // Verify that V is a vector type with same number of elements as DstVTy.
3591 auto VF = DstVTy->getElementCount();
3592 auto *SrcVecTy = cast<VectorType>(V->getType());
3593 assert(VF == SrcVecTy->getElementCount() && "Vector dimensions do not match");
3594 Type *SrcElemTy = SrcVecTy->getElementType();
3595 Type *DstElemTy = DstVTy->getElementType();
3596 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3597 "Vector elements must have same size");
3598
3599 // Do a direct cast if element types are castable.
3600 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3601 return Builder.CreateBitOrPointerCast(V, DstVTy);
3602 }
3603 // V cannot be directly casted to desired vector type.
3604 // May happen when V is a floating point vector but DstVTy is a vector of
3605 // pointers or vice-versa. Handle this using a two-step bitcast using an
3606 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3607 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3608 "Only one type should be a pointer type");
3609 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3610 "Only one type should be a floating point type");
3611 Type *IntTy =
3612 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3613 auto *VecIntTy = VectorType::get(IntTy, VF);
3614 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3615 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3616}
3617
3618/// Return a vector containing interleaved elements from multiple
3619/// smaller input vectors.
3621 const Twine &Name) {
3622 unsigned Factor = Vals.size();
3623 assert(Factor > 1 && "Tried to interleave invalid number of vectors");
3624
3625 VectorType *VecTy = cast<VectorType>(Vals[0]->getType());
3626#ifndef NDEBUG
3627 for (Value *Val : Vals)
3628 assert(Val->getType() == VecTy && "Tried to interleave mismatched types");
3629#endif
3630
3631 // Scalable vectors cannot use arbitrary shufflevectors (only splats), so
3632 // must use intrinsics to interleave.
3633 if (VecTy->isScalableTy()) {
3634 assert(Factor <= 8 && "Unsupported interleave factor for scalable vectors");
3635 return Builder.CreateVectorInterleave(Vals, Name);
3636 }
3637
3638 // Fixed length. Start by concatenating all vectors into a wide vector.
3639 Value *WideVec = concatenateVectors(Builder, Vals);
3640
3641 // Interleave the elements into the wide vector.
3642 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3643 return Builder.CreateShuffleVector(
3644 WideVec, createInterleaveMask(NumElts, Factor), Name);
3645}
3646
3647// Try to vectorize the interleave group that \p Instr belongs to.
3648//
3649// E.g. Translate following interleaved load group (factor = 3):
3650// for (i = 0; i < N; i+=3) {
3651// R = Pic[i]; // Member of index 0
3652// G = Pic[i+1]; // Member of index 1
3653// B = Pic[i+2]; // Member of index 2
3654// ... // do something to R, G, B
3655// }
3656// To:
3657// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
3658// %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements
3659// %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements
3660// %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements
3661//
3662// Or translate following interleaved store group (factor = 3):
3663// for (i = 0; i < N; i+=3) {
3664// ... do something to R, G, B
3665// Pic[i] = R; // Member of index 0
3666// Pic[i+1] = G; // Member of index 1
3667// Pic[i+2] = B; // Member of index 2
3668// }
3669// To:
3670// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
3671// %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
3672// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
3673// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
3674// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
3676 assert(!State.Lane && "Interleave group being replicated.");
3677 assert((!needsMaskForGaps() || !State.VF.isScalable()) &&
3678 "Masking gaps for scalable vectors is not yet supported.");
3680 Instruction *Instr = Group->getInsertPos();
3681
3682 // Prepare for the vector type of the interleaved load/store.
3683 Type *ScalarTy = getLoadStoreType(Instr);
3684 unsigned InterleaveFactor = Group->getFactor();
3685 auto *VecTy = VectorType::get(ScalarTy, State.VF * InterleaveFactor);
3686
3687 VPValue *BlockInMask = getMask();
3688 VPValue *Addr = getAddr();
3689 Value *ResAddr = State.get(Addr, VPLane(0));
3690
3691 auto CreateGroupMask = [&BlockInMask, &State,
3692 &InterleaveFactor](Value *MaskForGaps) -> Value * {
3693 if (State.VF.isScalable()) {
3694 assert(!MaskForGaps && "Interleaved groups with gaps are not supported.");
3695 assert(InterleaveFactor <= 8 &&
3696 "Unsupported deinterleave factor for scalable vectors");
3697 auto *ResBlockInMask = State.get(BlockInMask);
3698 SmallVector<Value *> Ops(InterleaveFactor, ResBlockInMask);
3699 return interleaveVectors(State.Builder, Ops, "interleaved.mask");
3700 }
3701
3702 if (!BlockInMask)
3703 return MaskForGaps;
3704
3705 Value *ResBlockInMask = State.get(BlockInMask);
3706 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3707 ResBlockInMask,
3708 createReplicatedMask(InterleaveFactor, State.VF.getFixedValue()),
3709 "interleaved.mask");
3710 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3711 ShuffledMask, MaskForGaps)
3712 : ShuffledMask;
3713 };
3714
3715 const DataLayout &DL = Instr->getDataLayout();
3716 // Vectorize the interleaved load group.
3717 if (isa<LoadInst>(Instr)) {
3718 Value *MaskForGaps = nullptr;
3719 if (needsMaskForGaps()) {
3720 MaskForGaps =
3721 createBitMaskForGaps(State.Builder, State.VF.getFixedValue(), *Group);
3722 assert(MaskForGaps && "Mask for Gaps is required but it is null");
3723 }
3724
3725 Instruction *NewLoad;
3726 if (BlockInMask || MaskForGaps) {
3727 Value *GroupMask = CreateGroupMask(MaskForGaps);
3728 Value *PoisonVec = PoisonValue::get(VecTy);
3729 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3730 Group->getAlign(), GroupMask,
3731 PoisonVec, "wide.masked.vec");
3732 } else
3733 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3734 Group->getAlign(), "wide.vec");
3735 applyMetadata(*NewLoad);
3736 // TODO: Also manage existing metadata using VPIRMetadata.
3737 Group->addMetadata(NewLoad);
3738
3740 if (VecTy->isScalableTy()) {
3741 // Scalable vectors cannot use arbitrary shufflevectors (only splats),
3742 // so must use intrinsics to deinterleave.
3743 assert(InterleaveFactor <= 8 &&
3744 "Unsupported deinterleave factor for scalable vectors");
3745 NewLoad = State.Builder.CreateIntrinsic(
3746 Intrinsic::getDeinterleaveIntrinsicID(InterleaveFactor),
3747 NewLoad->getType(), NewLoad,
3748 /*FMFSource=*/nullptr, "strided.vec");
3749 }
3750
3751 auto CreateStridedVector = [&InterleaveFactor, &State,
3752 &NewLoad](unsigned Index) -> Value * {
3753 assert(Index < InterleaveFactor && "Illegal group index");
3754 if (State.VF.isScalable())
3755 return State.Builder.CreateExtractValue(NewLoad, Index);
3756
3757 // For fixed length VF, use shuffle to extract the sub-vectors from the
3758 // wide load.
3759 auto StrideMask =
3760 createStrideMask(Index, InterleaveFactor, State.VF.getFixedValue());
3761 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3762 "strided.vec");
3763 };
3764
3765 for (unsigned I = 0, J = 0; I < InterleaveFactor; ++I) {
3766 Instruction *Member = Group->getMember(I);
3767
3768 // Skip the gaps in the group.
3769 if (!Member)
3770 continue;
3771
3772 Value *StridedVec = CreateStridedVector(I);
3773
3774 // If this member has different type, cast the result type.
3775 if (Member->getType() != ScalarTy) {
3776 VectorType *OtherVTy = VectorType::get(Member->getType(), State.VF);
3777 StridedVec =
3778 createBitOrPointerCast(State.Builder, StridedVec, OtherVTy, DL);
3779 }
3780
3781 if (Group->isReverse())
3782 StridedVec = State.Builder.CreateVectorReverse(StridedVec, "reverse");
3783
3784 State.set(VPDefs[J], StridedVec);
3785 ++J;
3786 }
3787 return;
3788 }
3789
3790 // The sub vector type for current instruction.
3791 auto *SubVT = VectorType::get(ScalarTy, State.VF);
3792
3793 // Vectorize the interleaved store group.
3794 Value *MaskForGaps =
3795 createBitMaskForGaps(State.Builder, State.VF.getKnownMinValue(), *Group);
3796 assert(((MaskForGaps != nullptr) == needsMaskForGaps()) &&
3797 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3798 ArrayRef<VPValue *> StoredValues = getStoredValues();
3799 // Collect the stored vector from each member.
3800 SmallVector<Value *, 4> StoredVecs;
3801 unsigned StoredIdx = 0;
3802 for (unsigned i = 0; i < InterleaveFactor; i++) {
3803 assert((Group->getMember(i) || MaskForGaps) &&
3804 "Fail to get a member from an interleaved store group");
3805 Instruction *Member = Group->getMember(i);
3806
3807 // Skip the gaps in the group.
3808 if (!Member) {
3809 Value *Undef = PoisonValue::get(SubVT);
3810 StoredVecs.push_back(Undef);
3811 continue;
3812 }
3813
3814 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3815 ++StoredIdx;
3816
3817 if (Group->isReverse())
3818 StoredVec = State.Builder.CreateVectorReverse(StoredVec, "reverse");
3819
3820 // If this member has different type, cast it to a unified type.
3821
3822 if (StoredVec->getType() != SubVT)
3823 StoredVec = createBitOrPointerCast(State.Builder, StoredVec, SubVT, DL);
3824
3825 StoredVecs.push_back(StoredVec);
3826 }
3827
3828 // Interleave all the smaller vectors into one wider vector.
3829 Value *IVec = interleaveVectors(State.Builder, StoredVecs, "interleaved.vec");
3830 Instruction *NewStoreInstr;
3831 if (BlockInMask || MaskForGaps) {
3832 Value *GroupMask = CreateGroupMask(MaskForGaps);
3833 NewStoreInstr = State.Builder.CreateMaskedStore(
3834 IVec, ResAddr, Group->getAlign(), GroupMask);
3835 } else
3836 NewStoreInstr =
3837 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->getAlign());
3838
3839 applyMetadata(*NewStoreInstr);
3840 // TODO: Also manage existing metadata using VPIRMetadata.
3841 Group->addMetadata(NewStoreInstr);
3842}
3843
3844#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3846 VPSlotTracker &SlotTracker) const {
3848 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
3849 IG->getInsertPos()->printAsOperand(O, false);
3850 O << ", ";
3852 VPValue *Mask = getMask();
3853 if (Mask) {
3854 O << ", ";
3855 Mask->printAsOperand(O, SlotTracker);
3856 }
3857
3858 unsigned OpIdx = 0;
3859 for (unsigned i = 0; i < IG->getFactor(); ++i) {
3860 if (!IG->getMember(i))
3861 continue;
3862 if (getNumStoreOperands() > 0) {
3863 O << "\n" << Indent << " store ";
3865 O << " to index " << i;
3866 } else {
3867 O << "\n" << Indent << " ";
3869 O << " = load from index " << i;
3870 }
3871 ++OpIdx;
3872 }
3873}
3874#endif
3875
3877 assert(!State.Lane && "Interleave group being replicated.");
3878 assert(State.VF.isScalable() &&
3879 "Only support scalable VF for EVL tail-folding.");
3881 "Masking gaps for scalable vectors is not yet supported.");
3883 Instruction *Instr = Group->getInsertPos();
3884
3885 // Prepare for the vector type of the interleaved load/store.
3886 Type *ScalarTy = getLoadStoreType(Instr);
3887 unsigned InterleaveFactor = Group->getFactor();
3888 assert(InterleaveFactor <= 8 &&
3889 "Unsupported deinterleave/interleave factor for scalable vectors");
3890 ElementCount WideVF = State.VF * InterleaveFactor;
3891 auto *VecTy = VectorType::get(ScalarTy, WideVF);
3892
3893 VPValue *Addr = getAddr();
3894 Value *ResAddr = State.get(Addr, VPLane(0));
3895 Value *EVL = State.get(getEVL(), VPLane(0));
3896 Value *InterleaveEVL = State.Builder.CreateMul(
3897 EVL, ConstantInt::get(EVL->getType(), InterleaveFactor), "interleave.evl",
3898 /* NUW= */ true, /* NSW= */ true);
3899 LLVMContext &Ctx = State.Builder.getContext();
3900
3901 Value *GroupMask = nullptr;
3902 if (VPValue *BlockInMask = getMask()) {
3903 SmallVector<Value *> Ops(InterleaveFactor, State.get(BlockInMask));
3904 GroupMask = interleaveVectors(State.Builder, Ops, "interleaved.mask");
3905 } else {
3906 GroupMask =
3907 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
3908 }
3909
3910 // Vectorize the interleaved load group.
3911 if (isa<LoadInst>(Instr)) {
3912 CallInst *NewLoad = State.Builder.CreateIntrinsic(
3913 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL}, nullptr,
3914 "wide.vp.load");
3915 NewLoad->addParamAttr(0,
3916 Attribute::getWithAlignment(Ctx, Group->getAlign()));
3917
3918 applyMetadata(*NewLoad);
3919 // TODO: Also manage existing metadata using VPIRMetadata.
3920 Group->addMetadata(NewLoad);
3921
3922 // Scalable vectors cannot use arbitrary shufflevectors (only splats),
3923 // so must use intrinsics to deinterleave.
3924 NewLoad = State.Builder.CreateIntrinsic(
3925 Intrinsic::getDeinterleaveIntrinsicID(InterleaveFactor),
3926 NewLoad->getType(), NewLoad,
3927 /*FMFSource=*/nullptr, "strided.vec");
3928
3929 const DataLayout &DL = Instr->getDataLayout();
3930 for (unsigned I = 0, J = 0; I < InterleaveFactor; ++I) {
3931 Instruction *Member = Group->getMember(I);
3932 // Skip the gaps in the group.
3933 if (!Member)
3934 continue;
3935
3936 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad, I);
3937 // If this member has different type, cast the result type.
3938 if (Member->getType() != ScalarTy) {
3939 VectorType *OtherVTy = VectorType::get(Member->getType(), State.VF);
3940 StridedVec =
3941 createBitOrPointerCast(State.Builder, StridedVec, OtherVTy, DL);
3942 }
3943
3944 State.set(getVPValue(J), StridedVec);
3945 ++J;
3946 }
3947 return;
3948 } // End for interleaved load.
3949
3950 // The sub vector type for current instruction.
3951 auto *SubVT = VectorType::get(ScalarTy, State.VF);
3952 // Vectorize the interleaved store group.
3953 ArrayRef<VPValue *> StoredValues = getStoredValues();
3954 // Collect the stored vector from each member.
3955 SmallVector<Value *, 4> StoredVecs;
3956 const DataLayout &DL = Instr->getDataLayout();
3957 for (unsigned I = 0, StoredIdx = 0; I < InterleaveFactor; I++) {
3958 Instruction *Member = Group->getMember(I);
3959 // Skip the gaps in the group.
3960 if (!Member) {
3961 StoredVecs.push_back(PoisonValue::get(SubVT));
3962 continue;
3963 }
3964
3965 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3966 // If this member has different type, cast it to a unified type.
3967 if (StoredVec->getType() != SubVT)
3968 StoredVec = createBitOrPointerCast(State.Builder, StoredVec, SubVT, DL);
3969
3970 StoredVecs.push_back(StoredVec);
3971 ++StoredIdx;
3972 }
3973
3974 // Interleave all the smaller vectors into one wider vector.
3975 Value *IVec = interleaveVectors(State.Builder, StoredVecs, "interleaved.vec");
3976 CallInst *NewStore =
3977 State.Builder.CreateIntrinsic(Type::getVoidTy(Ctx), Intrinsic::vp_store,
3978 {IVec, ResAddr, GroupMask, InterleaveEVL});
3979 NewStore->addParamAttr(1,
3980 Attribute::getWithAlignment(Ctx, Group->getAlign()));
3981
3982 applyMetadata(*NewStore);
3983 // TODO: Also manage existing metadata using VPIRMetadata.
3984 Group->addMetadata(NewStore);
3985}
3986
3987#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3989 VPSlotTracker &SlotTracker) const {
3991 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
3992 IG->getInsertPos()->printAsOperand(O, false);
3993 O << ", ";
3995 O << ", ";
3997 if (VPValue *Mask = getMask()) {
3998 O << ", ";
3999 Mask->printAsOperand(O, SlotTracker);
4000 }
4001
4002 unsigned OpIdx = 0;
4003 for (unsigned i = 0; i < IG->getFactor(); ++i) {
4004 if (!IG->getMember(i))
4005 continue;
4006 if (getNumStoreOperands() > 0) {
4007 O << "\n" << Indent << " vp.store ";
4009 O << " to index " << i;
4010 } else {
4011 O << "\n" << Indent << " ";
4013 O << " = vp.load from index " << i;
4014 }
4015 ++OpIdx;
4016 }
4017}
4018#endif
4019
4021 VPCostContext &Ctx) const {
4022 Instruction *InsertPos = getInsertPos();
4023 // Find the VPValue index of the interleave group. We need to skip gaps.
4024 unsigned InsertPosIdx = 0;
4025 for (unsigned Idx = 0; IG->getFactor(); ++Idx)
4026 if (auto *Member = IG->getMember(Idx)) {
4027 if (Member == InsertPos)
4028 break;
4029 InsertPosIdx++;
4030 }
4031 Type *ValTy = Ctx.Types.inferScalarType(
4032 getNumDefinedValues() > 0 ? getVPValue(InsertPosIdx)
4033 : getStoredValues()[InsertPosIdx]);
4034 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
4035 unsigned AS = getLoadStoreAddressSpace(InsertPos);
4036
4037 unsigned InterleaveFactor = IG->getFactor();
4038 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
4039
4040 // Holds the indices of existing members in the interleaved group.
4042 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
4043 if (IG->getMember(IF))
4044 Indices.push_back(IF);
4045
4046 // Calculate the cost of the whole interleaved group.
4047 InstructionCost Cost = Ctx.TTI.getInterleavedMemoryOpCost(
4048 InsertPos->getOpcode(), WideVecTy, IG->getFactor(), Indices,
4049 IG->getAlign(), AS, Ctx.CostKind, getMask(), NeedsMaskForGaps);
4050
4051 if (!IG->isReverse())
4052 return Cost;
4053
4054 return Cost + IG->getNumMembers() *
4055 Ctx.TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4056 VectorTy, VectorTy, {}, Ctx.CostKind,
4057 0);
4058}
4059
4060#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4062 VPSlotTracker &SlotTracker) const {
4063 O << Indent << "EMIT ";
4065 O << " = CANONICAL-INDUCTION ";
4067}
4068#endif
4069
4071 return IsScalarAfterVectorization &&
4072 (!IsScalable || vputils::onlyFirstLaneUsed(this));
4073}
4074
4075#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4077 VPSlotTracker &SlotTracker) const {
4078 assert((getNumOperands() == 3 || getNumOperands() == 5) &&
4079 "unexpected number of operands");
4080 O << Indent << "EMIT ";
4082 O << " = WIDEN-POINTER-INDUCTION ";
4084 O << ", ";
4086 O << ", ";
4088 if (getNumOperands() == 5) {
4089 O << ", ";
4091 O << ", ";
4093 }
4094}
4095
4097 VPSlotTracker &SlotTracker) const {
4098 O << Indent << "EMIT ";
4100 O << " = EXPAND SCEV " << *Expr;
4101}
4102#endif
4103
4105 Value *CanonicalIV = State.get(getOperand(0), /*IsScalar*/ true);
4106 Type *STy = CanonicalIV->getType();
4107 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4108 ElementCount VF = State.VF;
4109 Value *VStart = VF.isScalar()
4110 ? CanonicalIV
4111 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
4112 Value *VStep = createStepForVF(Builder, STy, VF, getUnrollPart(*this));
4113 if (VF.isVector()) {
4114 VStep = Builder.CreateVectorSplat(VF, VStep);
4115 VStep =
4116 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
4117 }
4118 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
4119 State.set(this, CanonicalVectorIV);
4120}
4121
4122#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4124 VPSlotTracker &SlotTracker) const {
4125 O << Indent << "EMIT ";
4127 O << " = WIDEN-CANONICAL-INDUCTION ";
4129}
4130#endif
4131
4133 auto &Builder = State.Builder;
4134 // Create a vector from the initial value.
4135 auto *VectorInit = getStartValue()->getLiveInIRValue();
4136
4137 Type *VecTy = State.VF.isScalar()
4138 ? VectorInit->getType()
4139 : VectorType::get(VectorInit->getType(), State.VF);
4140
4141 BasicBlock *VectorPH =
4142 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4143 if (State.VF.isVector()) {
4144 auto *IdxTy = Builder.getInt32Ty();
4145 auto *One = ConstantInt::get(IdxTy, 1);
4146 IRBuilder<>::InsertPointGuard Guard(Builder);
4147 Builder.SetInsertPoint(VectorPH->getTerminator());
4148 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
4149 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4150 VectorInit = Builder.CreateInsertElement(
4151 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
4152 }
4153
4154 // Create a phi node for the new recurrence.
4155 PHINode *Phi = PHINode::Create(VecTy, 2, "vector.recur");
4156 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4157 Phi->addIncoming(VectorInit, VectorPH);
4158 State.set(this, Phi);
4159}
4160
4163 VPCostContext &Ctx) const {
4164 if (VF.isScalar())
4165 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4166
4167 return 0;
4168}
4169
4170#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4172 VPSlotTracker &SlotTracker) const {
4173 O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
4175 O << " = phi ";
4177}
4178#endif
4179
4181 // Reductions do not have to start at zero. They can start with
4182 // any loop invariant values.
4183 VPValue *StartVPV = getStartValue();
4184
4185 // In order to support recurrences we need to be able to vectorize Phi nodes.
4186 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4187 // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4188 // this value when we vectorize all of the instructions that use the PHI.
4189 BasicBlock *VectorPH =
4190 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4191 bool ScalarPHI = State.VF.isScalar() || IsInLoop;
4192 Value *StartV = State.get(StartVPV, ScalarPHI);
4193 Type *VecTy = StartV->getType();
4194
4195 BasicBlock *HeaderBB = State.CFG.PrevBB;
4196 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4197 "recipe must be in the vector loop header");
4198 auto *Phi = PHINode::Create(VecTy, 2, "vec.phi");
4199 Phi->insertBefore(HeaderBB->getFirstInsertionPt());
4200 State.set(this, Phi, IsInLoop);
4201
4202 Phi->addIncoming(StartV, VectorPH);
4203}
4204
4205#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4207 VPSlotTracker &SlotTracker) const {
4208 O << Indent << "WIDEN-REDUCTION-PHI ";
4209
4211 O << " = phi ";
4213 if (VFScaleFactor != 1)
4214 O << " (VF scaled by 1/" << VFScaleFactor << ")";
4215}
4216#endif
4217
4219 Value *Op0 = State.get(getOperand(0));
4220 Type *VecTy = Op0->getType();
4221 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4222 State.set(this, VecPhi);
4223}
4224
4225#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4227 VPSlotTracker &SlotTracker) const {
4228 O << Indent << "WIDEN-PHI ";
4229
4231 O << " = phi ";
4233}
4234#endif
4235
4236// TODO: It would be good to use the existing VPWidenPHIRecipe instead and
4237// remove VPActiveLaneMaskPHIRecipe.
4239 BasicBlock *VectorPH =
4240 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4241 Value *StartMask = State.get(getOperand(0));
4242 PHINode *Phi =
4243 State.Builder.CreatePHI(StartMask->getType(), 2, "active.lane.mask");
4244 Phi->addIncoming(StartMask, VectorPH);
4245 State.set(this, Phi);
4246}
4247
4248#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4250 VPSlotTracker &SlotTracker) const {
4251 O << Indent << "ACTIVE-LANE-MASK-PHI ";
4252
4254 O << " = phi ";
4256}
4257#endif
4258
4259#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4261 VPSlotTracker &SlotTracker) const {
4262 O << Indent << "EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
4263
4265 O << " = phi ";
4267}
4268#endif
static SDValue Widen(SelectionDAG *CurDAG, SDValue N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
Definition Compiler.h:404
Hexagon Common GEP
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
#define I(x, y, z)
Definition MD5.cpp:58
mir Rename Register Operands
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
if(PassOpts->AAPipeline)
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
static Type * getGEPIndexTy(bool IsScalable, bool IsReverse, bool IsUnitStride, unsigned CurrentPart, IRBuilderBase &Builder)
SmallVector< Value *, 2 > VectorParts
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
Definition blake3_impl.h:83
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:984
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
static LLVM_ABI StringRef getPredicateName(Predicate P)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:163
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
A debug info location.
Definition DebugLoc.h:124
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
void setAllowContract(bool B=true)
Definition FMF.h:90
bool noSignedZeros() const
Definition FMF.h:67
bool noInfs() const
Definition FMF.h:66
void setAllowReciprocal(bool B=true)
Definition FMF.h:87
bool allowReciprocal() const
Definition FMF.h:68
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
Definition Operator.cpp:271
void setNoSignedZeros(bool B=true)
Definition FMF.h:84
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
bool approxFunc() const
Definition FMF.h:70
void setNoNaNs(bool B=true)
Definition FMF.h:78
void setAllowReassoc(bool B=true)
Flag setters.
Definition FMF.h:75
bool noNaNs() const
Definition FMF.h:65
void setApproxFunc(bool B=true)
Definition FMF.h:93
void setNoInfs(bool B=true)
Definition FMF.h:81
bool allowContract() const
Definition FMF.h:69
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
Definition Function.h:661
bool doesNotThrow() const
Determine if the function cannot unwind.
Definition Function.h:594
Type * getReturnType() const
Returns the type of the ret val.
Definition Function.h:214
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition IRBuilder.h:2571
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition IRBuilder.h:2625
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition IRBuilder.h:2559
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition IRBuilder.h:2618
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Definition IRBuilder.h:2637
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition IRBuilder.h:562
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition IRBuilder.h:2036
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Definition IRBuilder.h:567
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2333
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
Definition IRBuilder.h:527
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition IRBuilder.h:522
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:2463
Value * CreateNot(Value *V, const Twine &Name="")
Definition IRBuilder.h:1805
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2329
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Definition IRBuilder.h:1134
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1420
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition IRBuilder.h:2082
LLVMContext & getContext() const
Definition IRBuilder.h:203
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1403
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition IRBuilder.h:507
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:1708
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="")
Definition IRBuilder.h:1725
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2439
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Definition IRBuilder.h:1573
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1437
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2780
This instruction inserts a single (scalar) element into a VectorType value.
VectorType * getType() const
Overload to return most specific vector type.
static InstructionCost getInvalid(CostType Val=0)
bool isCast() const
bool isBinaryOp() const
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
bool isReverse() const
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
Align getAlign() const
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
std::pair< MDNode *, MDNode * > getNoAliasMetadataFor(const Instruction *OrigInst) const
Returns a pair containing the alias_scope and noalias metadata nodes for OrigInst,...
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:59
Vector takeVector()
Clear the SetVector and return the underlying vector.
Definition SetVector.h:93
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
@ TCC_Free
Expected to fold away in lowering.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Reverse
Reverse the order of the vector.
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:298
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:301
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
value_op_iterator value_op_end()
Definition User.h:313
void setOperand(unsigned i, Value *Val)
Definition User.h:237
Value * getOperand(unsigned i) const
Definition User.h:232
value_op_iterator value_op_begin()
Definition User.h:310
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3750
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
Definition VPlan.h:3803
iterator end()
Definition VPlan.h:3787
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition VPlan.h:3816
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
Definition VPlan.h:2418
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
Definition VPlan.h:2413
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
VPRegionBlock * getParent()
Definition VPlan.h:173
const VPBlocksTy & getPredecessors() const
Definition VPlan.h:204
VPlan * getPlan()
Definition VPlan.cpp:165
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
Definition VPlan.h:356
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
Definition VPlanValue.h:300
void dump() const
Dump the VPDef to stderr (for debugging).
Definition VPlan.cpp:126
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:422
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
Definition VPlanValue.h:417
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:395
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
Definition VPlanValue.h:407
friend class VPValue
Definition VPlanValue.h:301
unsigned getVPDefID() const
Definition VPlanValue.h:427
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
Definition VPlan.h:3627
VPValue * getStartValue() const
Definition VPlan.h:3626
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this header phi recipe.
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2000
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Definition VPlan.h:1706
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Class to record and manage LLVM IR flags.
Definition VPlan.h:600
FastMathFlagsTy FMFs
Definition VPlan.h:664
bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
WrapFlagsTy WrapFlags
Definition VPlan.h:658
CmpInst::Predicate CmpPredicate
Definition VPlan.h:657
void printFlags(raw_ostream &O) const
GEPNoWrapFlags GEPFlags
Definition VPlan.h:662
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
Definition VPlan.h:819
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
TruncFlagsTy TruncFlags
Definition VPlan.h:659
CmpInst::Predicate getPredicate() const
Definition VPlan.h:801
ExactFlagsTy ExactFlags
Definition VPlan.h:661
bool hasNoSignedWrap() const
Definition VPlan.h:843
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
Definition VPlan.h:813
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
Definition VPlan.h:816
DisjointFlagsTy DisjointFlags
Definition VPlan.h:660
unsigned AllFlags
Definition VPlan.h:665
bool hasNoUnsignedWrap() const
Definition VPlan.h:832
NonNegFlagsTy NonNegFlags
Definition VPlan.h:663
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Definition VPlan.h:764
Instruction & getInstruction() const
Definition VPlan.h:1372
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void extractLastLaneOfFirstOperand(VPBuilder &Builder)
Update the recipes first operand to the last lane of the operand using Builder.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
Definition VPlan.h:1347
void intersect(const VPIRMetadata &MD)
Intersect this VPIRMetada object with MD, keeping only metadata nodes that are common to both.
void applyMetadata(Instruction &I) const
Add all metadata to I.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Definition VPlan.h:1097
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
Definition VPlan.h:1057
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1013
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
Definition VPlan.h:1047
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1060
@ FirstOrderRecurrenceSplice
Definition VPlan.h:986
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1051
@ BuildVector
Creates a fixed-width vector containing all operands.
Definition VPlan.h:1010
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
Definition VPlan.h:1007
@ VScale
Returns the value for vscale.
Definition VPlan.h:1062
@ CanonicalIVIncrementForPart
Definition VPlan.h:1000
@ CalculateTripCountMinusVF
Definition VPlan.h:998
bool hasResult() const
Definition VPlan.h:1136
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
Definition VPlan.h:1176
unsigned getOpcode() const
Definition VPlan.h:1116
bool onlyFirstPartUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
Definition VPlan.h:2528
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
Definition VPlan.h:2532
const InterleaveGroup< Instruction > * getInterleaveGroup() const
Definition VPlan.h:2530
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:2522
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
Definition VPlan.h:2551
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:2516
VPValue * getEVL() const
The VPValue of the explicit vector length.
Definition VPlan.h:2625
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
Definition VPlan.h:2644
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
Definition VPlan.h:2595
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPPartialReductionRecipe.
unsigned getOpcode() const
Get the binary op's opcode.
Definition VPlan.h:2782
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
Definition VPlan.h:1262
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
Definition VPlan.h:3894
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1287
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
Definition VPlan.h:1254
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:394
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
Definition VPlan.h:415
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:482
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:405
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPValue * getEVL() const
The VPValue of the explicit vector length.
Definition VPlan.h:2827
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
Definition VPlan.h:2724
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
Definition VPlan.h:2728
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getCondOp() const
The VPValue of the condition for the block.
Definition VPlan.h:2730
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
Definition VPlan.h:2720
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
Definition VPlan.h:2726
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2842
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
Definition VPlan.h:2887
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
unsigned getOpcode() const
Definition VPlan.h:2916
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
Definition VPlan.h:3692
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:521
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:586
LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:523
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
Definition VPlan.h:927
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:197
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
Definition VPlan.cpp:1443
operand_range operands()
Definition VPlanValue.h:265
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:241
unsigned getNumOperands() const
Definition VPlanValue.h:235
operand_iterator op_begin()
Definition VPlanValue.h:261
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:236
virtual bool onlyFirstLaneUsed(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
Definition VPlanValue.h:280
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
Definition VPlan.cpp:1397
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:135
friend class VPExpressionRecipe
Definition VPlanValue.h:53
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition VPlan.cpp:1439
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Definition VPlanValue.h:140
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:174
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:85
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
Definition VPlan.cpp:98
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1400
user_iterator user_begin()
Definition VPlanValue.h:130
unsigned getNumUsers() const
Definition VPlanValue.h:113
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
Definition VPlanValue.h:169
user_range users()
Definition VPlanValue.h:134
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
operand_range args()
Definition VPlan.h:1663
Function * getCalledScalarFunction() const
Definition VPlan.h:1659
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
Definition VPlan.h:1532
void execute(VPTransformState &State) override
Produce widened copies of the cast.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
VPValue * getStepValue()
Returns the step value of the induction.
Definition VPlan.h:2056
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Definition VPlan.h:2167
Type * getScalarType() const
Returns the scalar type of the induction.
Definition VPlan.h:2176
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
Definition VPlan.h:1597
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Return the scalar return type of the intrinsic.
Definition VPlan.h:1600
void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
Definition VPlan.h:3130
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
Definition VPlan.h:3127
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
Definition VPlan.h:3167
Instruction & Ingredient
Definition VPlan.h:3121
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
Definition VPlan.h:3124
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:3181
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:3174
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
Definition VPlan.h:3171
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1436
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getUF() const
Definition VPlan.h:4270
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1034
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1101
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
Definition Value.h:838
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:134
iterator erase(iterator where)
Definition ilist.h:204
pointer remove(iterator &IT)
Definition ilist.h:188
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
Definition VPlanUtils.h:44
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:310
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
@ Offset
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1707
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
InstructionCost Cost
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2454
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:738
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
Definition STLExtras.h:2213
auto cast_or_null(const Y &Val)
Definition Casting.h:720
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1714
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1721
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition STLExtras.h:317
@ Other
Any other memory.
Definition ModRef.h:68
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1879
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
Definition VPlan.h:1409
PHINode & getIRPhi()
Definition VPlan.h:1417
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
Definition VPlan.h:872
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:873
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
VPTypeAnalysis TypeAnalysis
VPlan-based type analysis.
Value * get(const VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
Definition VPlan.cpp:293
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
void execute(VPTransformState &State) override
Generate the wide load or gather.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
Definition VPlan.h:3254
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool isInvariantCond() const
Definition VPlan.h:1752
VPValue * getCond() const
Definition VPlan.h:1748
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
Definition VPlan.h:3335
void execute(VPTransformState &State) override
Generate the wide store or scatter.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
Definition VPlan.h:3338
void execute(VPTransformState &State) override
Generate a wide store or scatter.
VPValue * getStoredValue() const
Return the value stored by this recipe.
Definition VPlan.h:3299
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.