LLVM 22.0.0git
VPlanTransforms.cpp
Go to the documentation of this file.
1//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a set of utility VPlan to VPlan transformations.
11///
12//===----------------------------------------------------------------------===//
13
14#include "VPlanTransforms.h"
15#include "VPRecipeBuilder.h"
16#include "VPlan.h"
17#include "VPlanAnalysis.h"
18#include "VPlanCFG.h"
19#include "VPlanDominatorTree.h"
20#include "VPlanHelpers.h"
21#include "VPlanPatternMatch.h"
22#include "VPlanUtils.h"
23#include "VPlanVerifier.h"
24#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/TypeSwitch.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/MDBuilder.h"
39
40using namespace llvm;
41using namespace VPlanPatternMatch;
42
44 "enable-wide-lane-mask", cl::init(false), cl::Hidden,
45 cl::desc("Enable use of wide get active lane mask instructions"));
46
48 VPlanPtr &Plan,
50 GetIntOrFpInductionDescriptor,
51 const TargetLibraryInfo &TLI) {
52
54 Plan->getVectorLoopRegion());
56 // Skip blocks outside region
57 if (!VPBB->getParent())
58 break;
59 VPRecipeBase *Term = VPBB->getTerminator();
60 auto EndIter = Term ? Term->getIterator() : VPBB->end();
61 // Introduce each ingredient into VPlan.
62 for (VPRecipeBase &Ingredient :
63 make_early_inc_range(make_range(VPBB->begin(), EndIter))) {
64
65 VPValue *VPV = Ingredient.getVPSingleValue();
66 if (!VPV->getUnderlyingValue())
67 continue;
68
70
71 VPRecipeBase *NewRecipe = nullptr;
72 if (auto *PhiR = dyn_cast<VPPhi>(&Ingredient)) {
73 auto *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
74 const auto *II = GetIntOrFpInductionDescriptor(Phi);
75 if (!II) {
76 NewRecipe = new VPWidenPHIRecipe(Phi, nullptr, PhiR->getDebugLoc());
77 for (VPValue *Op : PhiR->operands())
78 NewRecipe->addOperand(Op);
79 } else {
80 VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue());
81 VPValue *Step =
83 NewRecipe = new VPWidenIntOrFpInductionRecipe(
84 Phi, Start, Step, &Plan->getVF(), *II, Ingredient.getDebugLoc());
85 }
86 } else {
87 assert(isa<VPInstruction>(&Ingredient) &&
88 "only VPInstructions expected here");
89 assert(!isa<PHINode>(Inst) && "phis should be handled above");
90 // Create VPWidenMemoryRecipe for loads and stores.
91 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
92 NewRecipe = new VPWidenLoadRecipe(
93 *Load, Ingredient.getOperand(0), nullptr /*Mask*/,
94 false /*Consecutive*/, false /*Reverse*/, VPIRMetadata(*Load),
95 Ingredient.getDebugLoc());
96 } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
97 NewRecipe = new VPWidenStoreRecipe(
98 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
99 nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/,
100 VPIRMetadata(*Store), Ingredient.getDebugLoc());
102 NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands());
103 } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
104 Intrinsic::ID VectorID = getVectorIntrinsicIDForCall(CI, &TLI);
105 if (VectorID == Intrinsic::not_intrinsic)
106 return false;
107 NewRecipe = new VPWidenIntrinsicRecipe(
108 *CI, getVectorIntrinsicIDForCall(CI, &TLI),
109 {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(),
110 CI->getDebugLoc());
111 } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
112 NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands());
113 } else if (auto *CI = dyn_cast<CastInst>(Inst)) {
114 NewRecipe = new VPWidenCastRecipe(
115 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
116 } else {
117 NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands());
118 }
119 }
120
121 NewRecipe->insertBefore(&Ingredient);
122 if (NewRecipe->getNumDefinedValues() == 1)
123 VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
124 else
125 assert(NewRecipe->getNumDefinedValues() == 0 &&
126 "Only recpies with zero or one defined values expected");
127 Ingredient.eraseFromParent();
128 }
129 }
130 return true;
131}
132
133static bool sinkScalarOperands(VPlan &Plan) {
134 auto Iter = vp_depth_first_deep(Plan.getEntry());
135 bool Changed = false;
136 // First, collect the operands of all recipes in replicate blocks as seeds for
137 // sinking.
140 VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock();
141 if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2)
142 continue;
143 VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]);
144 if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock())
145 continue;
146 for (auto &Recipe : *VPBB) {
147 for (VPValue *Op : Recipe.operands())
148 if (auto *Def =
149 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
150 WorkList.insert({VPBB, Def});
151 }
152 }
153
154 bool ScalarVFOnly = Plan.hasScalarVFOnly();
155 // Try to sink each replicate or scalar IV steps recipe in the worklist.
156 for (unsigned I = 0; I != WorkList.size(); ++I) {
157 VPBasicBlock *SinkTo;
158 VPSingleDefRecipe *SinkCandidate;
159 std::tie(SinkTo, SinkCandidate) = WorkList[I];
160 if (SinkCandidate->getParent() == SinkTo ||
161 SinkCandidate->mayHaveSideEffects() ||
162 SinkCandidate->mayReadOrWriteMemory())
163 continue;
164 if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
165 if (!ScalarVFOnly && RepR->isSingleScalar())
166 continue;
167 } else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate))
168 continue;
169
170 bool NeedsDuplicating = false;
171 // All recipe users of the sink candidate must be in the same block SinkTo
172 // or all users outside of SinkTo must be uniform-after-vectorization (
173 // i.e., only first lane is used) . In the latter case, we need to duplicate
174 // SinkCandidate.
175 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
176 SinkCandidate](VPUser *U) {
177 auto *UI = cast<VPRecipeBase>(U);
178 if (UI->getParent() == SinkTo)
179 return true;
180 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
181 // We only know how to duplicate VPReplicateRecipes and
182 // VPScalarIVStepsRecipes for now.
183 return NeedsDuplicating &&
185 };
186 if (!all_of(SinkCandidate->users(), CanSinkWithUser))
187 continue;
188
189 if (NeedsDuplicating) {
190 if (ScalarVFOnly)
191 continue;
192 VPSingleDefRecipe *Clone;
193 if (auto *SinkCandidateRepR =
194 dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
195 // TODO: Handle converting to uniform recipes as separate transform,
196 // then cloning should be sufficient here.
197 Instruction *I = SinkCandidate->getUnderlyingInstr();
198 Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true,
199 nullptr /*Mask*/, *SinkCandidateRepR);
200 // TODO: add ".cloned" suffix to name of Clone's VPValue.
201 } else {
202 Clone = SinkCandidate->clone();
203 }
204
205 Clone->insertBefore(SinkCandidate);
206 SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) {
207 return cast<VPRecipeBase>(&U)->getParent() != SinkTo;
208 });
209 }
210 SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi());
211 for (VPValue *Op : SinkCandidate->operands())
212 if (auto *Def =
213 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
214 WorkList.insert({SinkTo, Def});
215 Changed = true;
216 }
217 return Changed;
218}
219
220/// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return
221/// the mask.
223 auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry());
224 if (!EntryBB || EntryBB->size() != 1 ||
225 !isa<VPBranchOnMaskRecipe>(EntryBB->begin()))
226 return nullptr;
227
228 return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0);
229}
230
231/// If \p R is a triangle region, return the 'then' block of the triangle.
233 auto *EntryBB = cast<VPBasicBlock>(R->getEntry());
234 if (EntryBB->getNumSuccessors() != 2)
235 return nullptr;
236
237 auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]);
238 auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]);
239 if (!Succ0 || !Succ1)
240 return nullptr;
241
242 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
243 return nullptr;
244 if (Succ0->getSingleSuccessor() == Succ1)
245 return Succ0;
246 if (Succ1->getSingleSuccessor() == Succ0)
247 return Succ1;
248 return nullptr;
249}
250
251// Merge replicate regions in their successor region, if a replicate region
252// is connected to a successor replicate region with the same predicate by a
253// single, empty VPBasicBlock.
255 SmallPtrSet<VPRegionBlock *, 4> TransformedRegions;
256
257 // Collect replicate regions followed by an empty block, followed by another
258 // replicate region with matching masks to process front. This is to avoid
259 // iterator invalidation issues while merging regions.
262 vp_depth_first_deep(Plan.getEntry()))) {
263 if (!Region1->isReplicator())
264 continue;
265 auto *MiddleBasicBlock =
266 dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor());
267 if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
268 continue;
269
270 auto *Region2 =
271 dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
272 if (!Region2 || !Region2->isReplicator())
273 continue;
274
275 VPValue *Mask1 = getPredicatedMask(Region1);
276 VPValue *Mask2 = getPredicatedMask(Region2);
277 if (!Mask1 || Mask1 != Mask2)
278 continue;
279
280 assert(Mask1 && Mask2 && "both region must have conditions");
281 WorkList.push_back(Region1);
282 }
283
284 // Move recipes from Region1 to its successor region, if both are triangles.
285 for (VPRegionBlock *Region1 : WorkList) {
286 if (TransformedRegions.contains(Region1))
287 continue;
288 auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor());
289 auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
290
291 VPBasicBlock *Then1 = getPredicatedThenBlock(Region1);
292 VPBasicBlock *Then2 = getPredicatedThenBlock(Region2);
293 if (!Then1 || !Then2)
294 continue;
295
296 // Note: No fusion-preventing memory dependencies are expected in either
297 // region. Such dependencies should be rejected during earlier dependence
298 // checks, which guarantee accesses can be re-ordered for vectorization.
299 //
300 // Move recipes to the successor region.
301 for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1)))
302 ToMove.moveBefore(*Then2, Then2->getFirstNonPhi());
303
304 auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor());
305 auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor());
306
307 // Move VPPredInstPHIRecipes from the merge block to the successor region's
308 // merge block. Update all users inside the successor region to use the
309 // original values.
310 for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) {
311 VPValue *PredInst1 =
312 cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0);
313 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
314 Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) {
315 return cast<VPRecipeBase>(&U)->getParent() == Then2;
316 });
317
318 // Remove phi recipes that are unused after merging the regions.
319 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
320 Phi1ToMove.eraseFromParent();
321 continue;
322 }
323 Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
324 }
325
326 // Remove the dead recipes in Region1's entry block.
327 for (VPRecipeBase &R :
328 make_early_inc_range(reverse(*Region1->getEntryBasicBlock())))
329 R.eraseFromParent();
330
331 // Finally, remove the first region.
332 for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) {
333 VPBlockUtils::disconnectBlocks(Pred, Region1);
334 VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock);
335 }
336 VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock);
337 TransformedRegions.insert(Region1);
338 }
339
340 return !TransformedRegions.empty();
341}
342
344 VPlan &Plan) {
345 Instruction *Instr = PredRecipe->getUnderlyingInstr();
346 // Build the triangular if-then region.
347 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
348 assert(Instr->getParent() && "Predicated instruction not in any basic block");
349 auto *BlockInMask = PredRecipe->getMask();
350 auto *MaskDef = BlockInMask->getDefiningRecipe();
351 auto *BOMRecipe = new VPBranchOnMaskRecipe(
352 BlockInMask, MaskDef ? MaskDef->getDebugLoc() : DebugLoc::getUnknown());
353 auto *Entry =
354 Plan.createVPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
355
356 // Replace predicated replicate recipe with a replicate recipe without a
357 // mask but in the replicate region.
358 auto *RecipeWithoutMask = new VPReplicateRecipe(
359 PredRecipe->getUnderlyingInstr(),
360 make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())),
361 PredRecipe->isSingleScalar(), nullptr /*Mask*/, *PredRecipe);
362 auto *Pred =
363 Plan.createVPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask);
364
365 VPPredInstPHIRecipe *PHIRecipe = nullptr;
366 if (PredRecipe->getNumUsers() != 0) {
367 PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask,
368 RecipeWithoutMask->getDebugLoc());
369 PredRecipe->replaceAllUsesWith(PHIRecipe);
370 PHIRecipe->setOperand(0, RecipeWithoutMask);
371 }
372 PredRecipe->eraseFromParent();
373 auto *Exiting =
374 Plan.createVPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
376 Plan.createVPRegionBlock(Entry, Exiting, RegionName, true);
377
378 // Note: first set Entry as region entry and then connect successors starting
379 // from it in order, to propagate the "parent" of each VPBasicBlock.
380 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
381 VPBlockUtils::connectBlocks(Pred, Exiting);
382
383 return Region;
384}
385
386static void addReplicateRegions(VPlan &Plan) {
389 vp_depth_first_deep(Plan.getEntry()))) {
390 for (VPRecipeBase &R : *VPBB)
391 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
392 if (RepR->isPredicated())
393 WorkList.push_back(RepR);
394 }
395 }
396
397 unsigned BBNum = 0;
398 for (VPReplicateRecipe *RepR : WorkList) {
399 VPBasicBlock *CurrentBlock = RepR->getParent();
400 VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator());
401
402 BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent();
403 SplitBlock->setName(
404 OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : "");
405 // Record predicated instructions for above packing optimizations.
407 Region->setParent(CurrentBlock->getParent());
409
410 VPRegionBlock *ParentRegion = Region->getParent();
411 if (ParentRegion && ParentRegion->getExiting() == CurrentBlock)
412 ParentRegion->setExiting(SplitBlock);
413 }
414}
415
416/// Remove redundant VPBasicBlocks by merging them into their predecessor if
417/// the predecessor has a single successor.
421 vp_depth_first_deep(Plan.getEntry()))) {
422 // Don't fold the blocks in the skeleton of the Plan into their single
423 // predecessors for now.
424 // TODO: Remove restriction once more of the skeleton is modeled in VPlan.
425 if (!VPBB->getParent())
426 continue;
427 auto *PredVPBB =
428 dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor());
429 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 ||
430 isa<VPIRBasicBlock>(PredVPBB))
431 continue;
432 WorkList.push_back(VPBB);
433 }
434
435 for (VPBasicBlock *VPBB : WorkList) {
436 VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor());
437 for (VPRecipeBase &R : make_early_inc_range(*VPBB))
438 R.moveBefore(*PredVPBB, PredVPBB->end());
439 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
440 auto *ParentRegion = VPBB->getParent();
441 if (ParentRegion && ParentRegion->getExiting() == VPBB)
442 ParentRegion->setExiting(PredVPBB);
443 for (auto *Succ : to_vector(VPBB->successors())) {
445 VPBlockUtils::connectBlocks(PredVPBB, Succ);
446 }
447 // VPBB is now dead and will be cleaned up when the plan gets destroyed.
448 }
449 return !WorkList.empty();
450}
451
453 // Convert masked VPReplicateRecipes to if-then region blocks.
455
456 bool ShouldSimplify = true;
457 while (ShouldSimplify) {
458 ShouldSimplify = sinkScalarOperands(Plan);
459 ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan);
460 ShouldSimplify |= mergeBlocksIntoPredecessors(Plan);
461 }
462}
463
464/// Remove redundant casts of inductions.
465///
466/// Such redundant casts are casts of induction variables that can be ignored,
467/// because we already proved that the casted phi is equal to the uncasted phi
468/// in the vectorized loop. There is no need to vectorize the cast - the same
469/// value can be used for both the phi and casts in the vector loop.
471 for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
473 if (!IV || IV->getTruncInst())
474 continue;
475
476 // A sequence of IR Casts has potentially been recorded for IV, which
477 // *must be bypassed* when the IV is vectorized, because the vectorized IV
478 // will produce the desired casted value. This sequence forms a def-use
479 // chain and is provided in reverse order, ending with the cast that uses
480 // the IV phi. Search for the recipe of the last cast in the chain and
481 // replace it with the original IV. Note that only the final cast is
482 // expected to have users outside the cast-chain and the dead casts left
483 // over will be cleaned up later.
484 auto &Casts = IV->getInductionDescriptor().getCastInsts();
485 VPValue *FindMyCast = IV;
486 for (Instruction *IRCast : reverse(Casts)) {
487 VPSingleDefRecipe *FoundUserCast = nullptr;
488 for (auto *U : FindMyCast->users()) {
489 auto *UserCast = dyn_cast<VPSingleDefRecipe>(U);
490 if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
491 FoundUserCast = UserCast;
492 break;
493 }
494 }
495 FindMyCast = FoundUserCast;
496 }
497 FindMyCast->replaceAllUsesWith(IV);
498 }
499}
500
501/// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV
502/// recipe, if it exists.
504 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
505 VPWidenCanonicalIVRecipe *WidenNewIV = nullptr;
506 for (VPUser *U : CanonicalIV->users()) {
508 if (WidenNewIV)
509 break;
510 }
511
512 if (!WidenNewIV)
513 return;
514
516 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
517 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
518
519 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
520 continue;
521
522 // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides
523 // everything WidenNewIV's users need. That is, WidenOriginalIV will
524 // generate a vector phi or all users of WidenNewIV demand the first lane
525 // only.
526 if (!vputils::onlyScalarValuesUsed(WidenOriginalIV) ||
527 vputils::onlyFirstLaneUsed(WidenNewIV)) {
528 WidenNewIV->replaceAllUsesWith(WidenOriginalIV);
529 WidenNewIV->eraseFromParent();
530 return;
531 }
532 }
533}
534
535/// Returns true if \p R is dead and can be removed.
536static bool isDeadRecipe(VPRecipeBase &R) {
537 // Do remove conditional assume instructions as their conditions may be
538 // flattened.
539 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
540 bool IsConditionalAssume = RepR && RepR->isPredicated() &&
542 if (IsConditionalAssume)
543 return true;
544
545 if (R.mayHaveSideEffects())
546 return false;
547
548 // Recipe is dead if no user keeps the recipe alive.
549 return all_of(R.definedValues(),
550 [](VPValue *V) { return V->getNumUsers() == 0; });
551}
552
555 vp_post_order_deep(Plan.getEntry()))) {
556 // The recipes in the block are processed in reverse order, to catch chains
557 // of dead recipes.
558 for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
559 if (isDeadRecipe(R)) {
560 R.eraseFromParent();
561 continue;
562 }
563
564 // Check if R is a dead VPPhi <-> update cycle and remove it.
565 auto *PhiR = dyn_cast<VPPhi>(&R);
566 if (!PhiR || PhiR->getNumOperands() != 2 || PhiR->getNumUsers() != 1)
567 continue;
568 VPValue *Incoming = PhiR->getOperand(1);
569 if (*PhiR->user_begin() != Incoming->getDefiningRecipe() ||
570 Incoming->getNumUsers() != 1)
571 continue;
572 PhiR->replaceAllUsesWith(PhiR->getOperand(0));
573 PhiR->eraseFromParent();
574 Incoming->getDefiningRecipe()->eraseFromParent();
575 }
576 }
577}
578
581 Instruction::BinaryOps InductionOpcode,
582 FPMathOperator *FPBinOp, Instruction *TruncI,
583 VPValue *StartV, VPValue *Step, DebugLoc DL,
584 VPBuilder &Builder) {
586 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
587 VPSingleDefRecipe *BaseIV = Builder.createDerivedIV(
588 Kind, FPBinOp, StartV, CanonicalIV, Step, "offset.idx");
589
590 // Truncate base induction if needed.
591 VPTypeAnalysis TypeInfo(Plan);
592 Type *ResultTy = TypeInfo.inferScalarType(BaseIV);
593 if (TruncI) {
594 Type *TruncTy = TruncI->getType();
595 assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() &&
596 "Not truncating.");
597 assert(ResultTy->isIntegerTy() && "Truncation requires an integer type");
598 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy, DL);
599 ResultTy = TruncTy;
600 }
601
602 // Truncate step if needed.
603 Type *StepTy = TypeInfo.inferScalarType(Step);
604 if (ResultTy != StepTy) {
605 assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() &&
606 "Not truncating.");
607 assert(StepTy->isIntegerTy() && "Truncation requires an integer type");
608 auto *VecPreheader =
610 VPBuilder::InsertPointGuard Guard(Builder);
611 Builder.setInsertPoint(VecPreheader);
612 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy, DL);
613 }
614 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step,
615 &Plan.getVF(), DL);
616}
617
620 for (unsigned I = 0; I != Users.size(); ++I) {
622 if (isa<VPHeaderPHIRecipe>(Cur))
623 continue;
624 for (VPValue *V : Cur->definedValues())
625 Users.insert_range(V->users());
626 }
627 return Users.takeVector();
628}
629
630/// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd
631/// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as
632/// VPWidenPointerInductionRecipe will generate vectors only. If some users
633/// require vectors while other require scalars, the scalar uses need to extract
634/// the scalars from the generated vectors (Note that this is different to how
635/// int/fp inductions are handled). Legalize extract-from-ends using uniform
636/// VPReplicateRecipe of wide inductions to use regular VPReplicateRecipe, so
637/// the correct end value is available. Also optimize
638/// VPWidenIntOrFpInductionRecipe, if any of its users needs scalar values, by
639/// providing them scalar steps built on the canonical scalar IV and update the
640/// original IV's users. This is an optional optimization to reduce the needs of
641/// vector extracts.
644 bool HasOnlyVectorVFs = !Plan.hasScalarVFOnly();
645 VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi());
646 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
647 auto *PhiR = dyn_cast<VPWidenInductionRecipe>(&Phi);
648 if (!PhiR)
649 continue;
650
651 // Try to narrow wide and replicating recipes to uniform recipes, based on
652 // VPlan analysis.
653 // TODO: Apply to all recipes in the future, to replace legacy uniformity
654 // analysis.
655 auto Users = collectUsersRecursively(PhiR);
656 for (VPUser *U : reverse(Users)) {
657 auto *Def = dyn_cast<VPSingleDefRecipe>(U);
658 auto *RepR = dyn_cast<VPReplicateRecipe>(U);
659 // Skip recipes that shouldn't be narrowed.
660 if (!Def || !isa<VPReplicateRecipe, VPWidenRecipe>(Def) ||
661 Def->getNumUsers() == 0 || !Def->getUnderlyingValue() ||
662 (RepR && (RepR->isSingleScalar() || RepR->isPredicated())))
663 continue;
664
665 // Skip recipes that may have other lanes than their first used.
667 continue;
668
669 auto *Clone = new VPReplicateRecipe(Def->getUnderlyingInstr(),
670 Def->operands(), /*IsUniform*/ true);
671 Clone->insertAfter(Def);
672 Def->replaceAllUsesWith(Clone);
673 }
674
675 // Replace wide pointer inductions which have only their scalars used by
676 // PtrAdd(IndStart, ScalarIVSteps (0, Step)).
677 if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) {
678 if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF()))
679 continue;
680
681 const InductionDescriptor &ID = PtrIV->getInductionDescriptor();
682 VPValue *StartV =
683 Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0));
684 VPValue *StepV = PtrIV->getOperand(1);
686 Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr,
687 nullptr, StartV, StepV, PtrIV->getDebugLoc(), Builder);
688
689 VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps,
690 PtrIV->getDebugLoc(), "next.gep");
691
692 PtrIV->replaceAllUsesWith(PtrAdd);
693 continue;
694 }
695
696 // Replace widened induction with scalar steps for users that only use
697 // scalars.
698 auto *WideIV = cast<VPWidenIntOrFpInductionRecipe>(&Phi);
699 if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) {
700 return U->usesScalars(WideIV);
701 }))
702 continue;
703
704 const InductionDescriptor &ID = WideIV->getInductionDescriptor();
706 Plan, ID.getKind(), ID.getInductionOpcode(),
707 dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()),
708 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
709 WideIV->getDebugLoc(), Builder);
710
711 // Update scalar users of IV to use Step instead.
712 if (!HasOnlyVectorVFs)
713 WideIV->replaceAllUsesWith(Steps);
714 else
715 WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) {
716 return U.usesScalars(WideIV);
717 });
718 }
719}
720
721/// Check if \p VPV is an untruncated wide induction, either before or after the
722/// increment. If so return the header IV (before the increment), otherwise
723/// return null.
725 ScalarEvolution &SE) {
726 auto *WideIV = dyn_cast<VPWidenInductionRecipe>(VPV);
727 if (WideIV) {
728 // VPV itself is a wide induction, separately compute the end value for exit
729 // users if it is not a truncated IV.
730 auto *IntOrFpIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
731 return (IntOrFpIV && IntOrFpIV->getTruncInst()) ? nullptr : WideIV;
732 }
733
734 // Check if VPV is an optimizable induction increment.
735 VPRecipeBase *Def = VPV->getDefiningRecipe();
736 if (!Def || Def->getNumOperands() != 2)
737 return nullptr;
738 WideIV = dyn_cast<VPWidenInductionRecipe>(Def->getOperand(0));
739 if (!WideIV)
740 WideIV = dyn_cast<VPWidenInductionRecipe>(Def->getOperand(1));
741 if (!WideIV)
742 return nullptr;
743
744 auto IsWideIVInc = [&]() {
745 auto &ID = WideIV->getInductionDescriptor();
746
747 // Check if VPV increments the induction by the induction step.
748 VPValue *IVStep = WideIV->getStepValue();
749 switch (ID.getInductionOpcode()) {
750 case Instruction::Add:
751 return match(VPV, m_c_Add(m_Specific(WideIV), m_Specific(IVStep)));
752 case Instruction::FAdd:
754 m_Specific(IVStep)));
755 case Instruction::FSub:
756 return match(VPV, m_Binary<Instruction::FSub>(m_Specific(WideIV),
757 m_Specific(IVStep)));
758 case Instruction::Sub: {
759 // IVStep will be the negated step of the subtraction. Check if Step == -1
760 // * IVStep.
761 VPValue *Step;
762 if (!match(VPV, m_Sub(m_VPValue(), m_VPValue(Step))))
763 return false;
764 const SCEV *IVStepSCEV = vputils::getSCEVExprForVPValue(IVStep, SE);
765 const SCEV *StepSCEV = vputils::getSCEVExprForVPValue(Step, SE);
766 return !isa<SCEVCouldNotCompute>(IVStepSCEV) &&
767 !isa<SCEVCouldNotCompute>(StepSCEV) &&
768 IVStepSCEV == SE.getNegativeSCEV(StepSCEV);
769 }
770 default:
771 return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
772 match(VPV, m_GetElementPtr(m_Specific(WideIV),
773 m_Specific(WideIV->getStepValue())));
774 }
775 llvm_unreachable("should have been covered by switch above");
776 };
777 return IsWideIVInc() ? WideIV : nullptr;
778}
779
780/// Attempts to optimize the induction variable exit values for users in the
781/// early exit block.
783 VPTypeAnalysis &TypeInfo,
784 VPBlockBase *PredVPBB,
785 VPValue *Op,
786 ScalarEvolution &SE) {
787 VPValue *Incoming, *Mask;
790 m_VPValue(Mask)),
792 return nullptr;
793
794 auto *WideIV = getOptimizableIVOf(Incoming, SE);
795 if (!WideIV)
796 return nullptr;
797
798 auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
799 if (WideIntOrFp && WideIntOrFp->getTruncInst())
800 return nullptr;
801
802 // Calculate the final index.
803 VPValue *EndValue = Plan.getCanonicalIV();
804 auto CanonicalIVType = Plan.getCanonicalIV()->getScalarType();
805 VPBuilder B(cast<VPBasicBlock>(PredVPBB));
806
807 DebugLoc DL = cast<VPInstruction>(Op)->getDebugLoc();
808 VPValue *FirstActiveLane =
809 B.createNaryOp(VPInstruction::FirstActiveLane, Mask, DL);
810 Type *FirstActiveLaneType = TypeInfo.inferScalarType(FirstActiveLane);
811 FirstActiveLane = B.createScalarZExtOrTrunc(FirstActiveLane, CanonicalIVType,
812 FirstActiveLaneType, DL);
813 EndValue = B.createNaryOp(Instruction::Add, {EndValue, FirstActiveLane}, DL);
814
815 // `getOptimizableIVOf()` always returns the pre-incremented IV, so if it
816 // changed it means the exit is using the incremented value, so we need to
817 // add the step.
818 if (Incoming != WideIV) {
819 VPValue *One = Plan.getOrAddLiveIn(ConstantInt::get(CanonicalIVType, 1));
820 EndValue = B.createNaryOp(Instruction::Add, {EndValue, One}, DL);
821 }
822
823 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
824 const InductionDescriptor &ID = WideIV->getInductionDescriptor();
825 VPValue *Start = WideIV->getStartValue();
826 VPValue *Step = WideIV->getStepValue();
827 EndValue = B.createDerivedIV(
828 ID.getKind(), dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()),
829 Start, EndValue, Step);
830 }
831
832 return EndValue;
833}
834
835/// Attempts to optimize the induction variable exit values for users in the
836/// exit block coming from the latch in the original scalar loop.
838 VPlan &Plan, VPTypeAnalysis &TypeInfo, VPBlockBase *PredVPBB, VPValue *Op,
842 return nullptr;
843
844 auto *WideIV = getOptimizableIVOf(Incoming, SE);
845 if (!WideIV)
846 return nullptr;
847
848 VPValue *EndValue = EndValues.lookup(WideIV);
849 assert(EndValue && "end value must have been pre-computed");
850
851 // `getOptimizableIVOf()` always returns the pre-incremented IV, so if it
852 // changed it means the exit is using the incremented value, so we don't
853 // need to subtract the step.
854 if (Incoming != WideIV)
855 return EndValue;
856
857 // Otherwise, subtract the step from the EndValue.
858 VPBuilder B(cast<VPBasicBlock>(PredVPBB)->getTerminator());
859 VPValue *Step = WideIV->getStepValue();
860 Type *ScalarTy = TypeInfo.inferScalarType(WideIV);
861 if (ScalarTy->isIntegerTy())
862 return B.createNaryOp(Instruction::Sub, {EndValue, Step}, {}, "ind.escape");
863 if (ScalarTy->isPointerTy()) {
864 Type *StepTy = TypeInfo.inferScalarType(Step);
865 auto *Zero = Plan.getOrAddLiveIn(ConstantInt::get(StepTy, 0));
866 return B.createPtrAdd(EndValue,
867 B.createNaryOp(Instruction::Sub, {Zero, Step}),
868 DebugLoc::getUnknown(), "ind.escape");
869 }
870 if (ScalarTy->isFloatingPointTy()) {
871 const auto &ID = WideIV->getInductionDescriptor();
872 return B.createNaryOp(
873 ID.getInductionBinOp()->getOpcode() == Instruction::FAdd
874 ? Instruction::FSub
875 : Instruction::FAdd,
876 {EndValue, Step}, {ID.getInductionBinOp()->getFastMathFlags()});
877 }
878 llvm_unreachable("all possible induction types must be handled");
879 return nullptr;
880}
881
883 VPlan &Plan, DenseMap<VPValue *, VPValue *> &EndValues,
884 ScalarEvolution &SE) {
885 VPBlockBase *MiddleVPBB = Plan.getMiddleBlock();
886 VPTypeAnalysis TypeInfo(Plan);
887 for (VPIRBasicBlock *ExitVPBB : Plan.getExitBlocks()) {
888 for (VPRecipeBase &R : ExitVPBB->phis()) {
889 auto *ExitIRI = cast<VPIRPhi>(&R);
890
891 for (auto [Idx, PredVPBB] : enumerate(ExitVPBB->getPredecessors())) {
892 VPValue *Escape = nullptr;
893 if (PredVPBB == MiddleVPBB)
894 Escape = optimizeLatchExitInductionUser(Plan, TypeInfo, PredVPBB,
895 ExitIRI->getOperand(Idx),
896 EndValues, SE);
897 else
898 Escape = optimizeEarlyExitInductionUser(Plan, TypeInfo, PredVPBB,
899 ExitIRI->getOperand(Idx), SE);
900 if (Escape)
901 ExitIRI->setOperand(Idx, Escape);
902 }
903 }
904 }
905}
906
907/// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing
908/// them with already existing recipes expanding the same SCEV expression.
911
912 for (VPRecipeBase &R :
914 auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R);
915 if (!ExpR)
916 continue;
917
918 const auto &[V, Inserted] = SCEV2VPV.try_emplace(ExpR->getSCEV(), ExpR);
919 if (Inserted)
920 continue;
921 ExpR->replaceAllUsesWith(V->second);
922 ExpR->eraseFromParent();
923 }
924}
925
927 SmallVector<VPValue *> WorkList;
929 WorkList.push_back(V);
930
931 while (!WorkList.empty()) {
932 VPValue *Cur = WorkList.pop_back_val();
933 if (!Seen.insert(Cur).second)
934 continue;
936 if (!R)
937 continue;
938 if (!isDeadRecipe(*R))
939 continue;
940 WorkList.append(R->op_begin(), R->op_end());
941 R->eraseFromParent();
942 }
943}
944
945/// Try to fold \p R using InstSimplifyFolder. Will succeed and return a
946/// non-nullptr Value for a handled \p Opcode if corresponding \p Operands are
947/// foldable live-ins.
948static Value *tryToFoldLiveIns(const VPRecipeBase &R, unsigned Opcode,
950 const DataLayout &DL, VPTypeAnalysis &TypeInfo) {
952 for (VPValue *Op : Operands) {
953 if (!Op->isLiveIn() || !Op->getLiveInIRValue())
954 return nullptr;
955 Ops.push_back(Op->getLiveInIRValue());
956 }
957
958 InstSimplifyFolder Folder(DL);
959 if (Instruction::isBinaryOp(Opcode))
960 return Folder.FoldBinOp(static_cast<Instruction::BinaryOps>(Opcode), Ops[0],
961 Ops[1]);
962 if (Instruction::isCast(Opcode))
963 return Folder.FoldCast(static_cast<Instruction::CastOps>(Opcode), Ops[0],
964 TypeInfo.inferScalarType(R.getVPSingleValue()));
965 switch (Opcode) {
967 return Folder.FoldSelect(Ops[0], Ops[1],
970 return Folder.FoldBinOp(Instruction::BinaryOps::Xor, Ops[0],
972 case Instruction::Select:
973 return Folder.FoldSelect(Ops[0], Ops[1], Ops[2]);
974 case Instruction::ICmp:
975 case Instruction::FCmp:
976 return Folder.FoldCmp(cast<VPRecipeWithIRFlags>(R).getPredicate(), Ops[0],
977 Ops[1]);
978 case Instruction::GetElementPtr: {
979 auto &RFlags = cast<VPRecipeWithIRFlags>(R);
980 auto *GEP = cast<GetElementPtrInst>(RFlags.getUnderlyingInstr());
981 return Folder.FoldGEP(GEP->getSourceElementType(), Ops[0], drop_begin(Ops),
982 RFlags.getGEPNoWrapFlags());
983 }
986 return Folder.FoldGEP(IntegerType::getInt8Ty(TypeInfo.getContext()), Ops[0],
987 Ops[1],
988 cast<VPRecipeWithIRFlags>(R).getGEPNoWrapFlags());
989 // An extract of a live-in is an extract of a broadcast, so return the
990 // broadcasted element.
991 case Instruction::ExtractElement:
992 assert(!Ops[0]->getType()->isVectorTy() && "Live-ins should be scalar");
993 return Ops[0];
994 }
995 return nullptr;
996}
997
998/// Try to simplify recipe \p R.
999static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) {
1000 VPlan *Plan = R.getParent()->getPlan();
1001
1002 auto *Def = dyn_cast<VPSingleDefRecipe>(&R);
1003 if (!Def)
1004 return;
1005
1006 // Simplification of live-in IR values for SingleDef recipes using
1007 // InstSimplifyFolder.
1011 const DataLayout &DL =
1013 Value *V = tryToFoldLiveIns(*I, I->getOpcode(), I->operands(), DL,
1014 TypeInfo);
1015 if (V)
1016 I->replaceAllUsesWith(Plan->getOrAddLiveIn(V));
1017 return V;
1018 })
1019 .Default([](auto *) { return false; }))
1020 return;
1021
1022 // Fold PredPHI LiveIn -> LiveIn.
1023 if (auto *PredPHI = dyn_cast<VPPredInstPHIRecipe>(&R)) {
1024 VPValue *Op = PredPHI->getOperand(0);
1025 if (Op->isLiveIn())
1026 PredPHI->replaceAllUsesWith(Op);
1027 }
1028
1029 VPValue *A;
1030 if (match(Def, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) {
1031 Type *TruncTy = TypeInfo.inferScalarType(Def);
1032 Type *ATy = TypeInfo.inferScalarType(A);
1033 if (TruncTy == ATy) {
1034 Def->replaceAllUsesWith(A);
1035 } else {
1036 // Don't replace a scalarizing recipe with a widened cast.
1037 if (isa<VPReplicateRecipe>(Def))
1038 return;
1039 if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) {
1040
1041 unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue()))
1042 ? Instruction::SExt
1043 : Instruction::ZExt;
1044 auto *VPC =
1045 new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy);
1046 if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) {
1047 // UnderlyingExt has distinct return type, used to retain legacy cost.
1048 VPC->setUnderlyingValue(UnderlyingExt);
1049 }
1050 VPC->insertBefore(&R);
1051 Def->replaceAllUsesWith(VPC);
1052 } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) {
1053 auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy);
1054 VPC->insertBefore(&R);
1055 Def->replaceAllUsesWith(VPC);
1056 }
1057 }
1058#ifndef NDEBUG
1059 // Verify that the cached type info is for both A and its users is still
1060 // accurate by comparing it to freshly computed types.
1061 VPTypeAnalysis TypeInfo2(*Plan);
1062 assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A));
1063 for (VPUser *U : A->users()) {
1064 auto *R = cast<VPRecipeBase>(U);
1065 for (VPValue *VPV : R->definedValues())
1066 assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV));
1067 }
1068#endif
1069 }
1070
1071 // Simplify (X && Y) || (X && !Y) -> X.
1072 // TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X
1073 // && (Y || Z) and (X || !X) into true. This requires queuing newly created
1074 // recipes to be visited during simplification.
1075 VPValue *X, *Y, *Z;
1076 if (match(Def,
1079 Def->replaceAllUsesWith(X);
1080 Def->eraseFromParent();
1081 return;
1082 }
1083
1084 // x | 1 -> 1
1085 if (match(Def, m_c_BinaryOr(m_VPValue(X), m_AllOnes())))
1086 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) == X));
1087
1088 // x | 0 -> x
1089 if (match(Def, m_c_BinaryOr(m_VPValue(X), m_ZeroInt())))
1090 return Def->replaceAllUsesWith(X);
1091
1092 // x & 0 -> 0
1093 if (match(Def, m_c_BinaryAnd(m_VPValue(X), m_ZeroInt())))
1094 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) == X));
1095
1096 // x && false -> false
1097 if (match(Def, m_LogicalAnd(m_VPValue(X), m_False())))
1098 return Def->replaceAllUsesWith(Def->getOperand(1));
1099
1100 // (x && y) || (x && z) -> x && (y || z)
1101 VPBuilder Builder(Def);
1104 // Simplify only if one of the operands has one use to avoid creating an
1105 // extra recipe.
1106 (!Def->getOperand(0)->hasMoreThanOneUniqueUser() ||
1107 !Def->getOperand(1)->hasMoreThanOneUniqueUser()))
1108 return Def->replaceAllUsesWith(
1109 Builder.createLogicalAnd(X, Builder.createOr(Y, Z)));
1110
1111 // x && !x -> 0
1113 return Def->replaceAllUsesWith(Plan->getOrAddLiveIn(
1115
1116 if (match(Def, m_Select(m_VPValue(), m_VPValue(X), m_Deferred(X))))
1117 return Def->replaceAllUsesWith(X);
1118
1119 // select !c, x, y -> select c, y, x
1120 VPValue *C;
1121 if (match(Def, m_Select(m_Not(m_VPValue(C)), m_VPValue(X), m_VPValue(Y)))) {
1122 Def->setOperand(0, C);
1123 Def->setOperand(1, Y);
1124 Def->setOperand(2, X);
1125 return;
1126 }
1127
1128 // Reassociate (x && y) && z -> x && (y && z) if x has multiple users. With
1129 // tail folding it is likely that x is a header mask and can be simplified
1130 // further.
1132 m_VPValue(Z))) &&
1133 X->hasMoreThanOneUniqueUser())
1134 return Def->replaceAllUsesWith(
1135 Builder.createLogicalAnd(X, Builder.createLogicalAnd(Y, Z)));
1136
1137 if (match(Def, m_c_Mul(m_VPValue(A), m_SpecificInt(1))))
1138 return Def->replaceAllUsesWith(A);
1139
1140 if (match(Def, m_c_Mul(m_VPValue(A), m_SpecificInt(0))))
1141 return Def->replaceAllUsesWith(R.getOperand(0) == A ? R.getOperand(1)
1142 : R.getOperand(0));
1143
1144 if (match(Def, m_Not(m_VPValue(A)))) {
1145 if (match(A, m_Not(m_VPValue(A))))
1146 return Def->replaceAllUsesWith(A);
1147
1148 // Try to fold Not into compares by adjusting the predicate in-place.
1149 CmpPredicate Pred;
1150 if (match(A, m_Cmp(Pred, m_VPValue(), m_VPValue()))) {
1151 auto *Cmp = cast<VPRecipeWithIRFlags>(A);
1152 if (all_of(Cmp->users(), [&Cmp](VPUser *U) {
1153 return match(U, m_CombineOr(m_Not(m_Specific(Cmp)),
1154 m_Select(m_Specific(Cmp), m_VPValue(),
1155 m_VPValue())));
1156 })) {
1157 Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
1158 for (VPUser *U : to_vector(Cmp->users())) {
1159 auto *R = cast<VPSingleDefRecipe>(U);
1160 if (match(R, m_Select(m_Specific(Cmp), m_VPValue(X), m_VPValue(Y)))) {
1161 // select (cmp pred), x, y -> select (cmp inv_pred), y, x
1162 R->setOperand(1, Y);
1163 R->setOperand(2, X);
1164 } else {
1165 // not (cmp pred) -> cmp inv_pred
1166 assert(match(R, m_Not(m_Specific(Cmp))) && "Unexpected user");
1167 R->replaceAllUsesWith(Cmp);
1168 }
1169 }
1170 // If Cmp doesn't have a debug location, use the one from the negation,
1171 // to preserve the location.
1172 if (!Cmp->getDebugLoc() && R.getDebugLoc())
1173 Cmp->setDebugLoc(R.getDebugLoc());
1174 }
1175 }
1176 }
1177
1178 // Remove redundant DerviedIVs, that is 0 + A * 1 -> A and 0 + 0 * x -> 0.
1179 if ((match(Def,
1181 match(Def,
1183 TypeInfo.inferScalarType(Def->getOperand(1)) ==
1184 TypeInfo.inferScalarType(Def))
1185 return Def->replaceAllUsesWith(Def->getOperand(1));
1186
1188 m_VPValue(X), m_SpecificInt(1)))) {
1189 Type *WideStepTy = TypeInfo.inferScalarType(Def);
1190 if (TypeInfo.inferScalarType(X) != WideStepTy)
1191 X = Builder.createWidenCast(Instruction::Trunc, X, WideStepTy);
1192 Def->replaceAllUsesWith(X);
1193 return;
1194 }
1195
1196 // For i1 vp.merges produced by AnyOf reductions:
1197 // vp.merge true, (or x, y), x, evl -> vp.merge y, true, x, evl
1199 m_VPValue(X), m_VPValue())) &&
1201 TypeInfo.inferScalarType(R.getVPSingleValue())->isIntegerTy(1)) {
1202 Def->setOperand(1, Def->getOperand(0));
1203 Def->setOperand(0, Y);
1204 return;
1205 }
1206
1207 if (auto *Phi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(Def)) {
1208 if (Phi->getOperand(0) == Phi->getOperand(1))
1209 Def->replaceAllUsesWith(Phi->getOperand(0));
1210 return;
1211 }
1212
1213 // Look through ExtractLastElement (BuildVector ....).
1215 auto *BuildVector = cast<VPInstruction>(R.getOperand(0));
1216 Def->replaceAllUsesWith(
1217 BuildVector->getOperand(BuildVector->getNumOperands() - 1));
1218 return;
1219 }
1220
1221 // Look through ExtractPenultimateElement (BuildVector ....).
1223 m_BuildVector()))) {
1224 auto *BuildVector = cast<VPInstruction>(R.getOperand(0));
1225 Def->replaceAllUsesWith(
1226 BuildVector->getOperand(BuildVector->getNumOperands() - 2));
1227 return;
1228 }
1229
1230 if (auto *Phi = dyn_cast<VPPhi>(Def)) {
1231 if (Phi->getNumOperands() == 1)
1232 Phi->replaceAllUsesWith(Phi->getOperand(0));
1233 return;
1234 }
1235
1236 // Some simplifications can only be applied after unrolling. Perform them
1237 // below.
1238 if (!Plan->isUnrolled())
1239 return;
1240
1241 // VPVectorPointer for part 0 can be replaced by their start pointer.
1242 if (auto *VecPtr = dyn_cast<VPVectorPointerRecipe>(&R)) {
1243 if (VecPtr->isFirstPart()) {
1244 VecPtr->replaceAllUsesWith(VecPtr->getOperand(0));
1245 return;
1246 }
1247 }
1248
1249 // VPScalarIVSteps for part 0 can be replaced by their start value, if only
1250 // the first lane is demanded.
1251 if (auto *Steps = dyn_cast<VPScalarIVStepsRecipe>(Def)) {
1252 if (Steps->isPart0() && vputils::onlyFirstLaneUsed(Steps)) {
1253 Steps->replaceAllUsesWith(Steps->getOperand(0));
1254 return;
1255 }
1256 }
1257 // Simplify redundant ReductionStartVector recipes after unrolling.
1258 VPValue *StartV;
1260 m_VPValue(StartV), m_VPValue(), m_VPValue()))) {
1261 Def->replaceUsesWithIf(StartV, [](const VPUser &U, unsigned Idx) {
1262 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&U);
1263 return PhiR && PhiR->isInLoop();
1264 });
1265 return;
1266 }
1267
1269 Def->replaceAllUsesWith(A);
1270 return;
1271 }
1272
1273 if (match(Def,
1277 cast<VPReplicateRecipe>(A)->isSingleScalar())) &&
1278 all_of(A->users(),
1279 [Def, A](VPUser *U) { return U->usesScalars(A) || Def == U; })) {
1280 return Def->replaceAllUsesWith(A);
1281 }
1282}
1283
1286 Plan.getEntry());
1287 VPTypeAnalysis TypeInfo(Plan);
1289 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
1290 simplifyRecipe(R, TypeInfo);
1291 }
1292 }
1293}
1294
1296 if (Plan.hasScalarVFOnly())
1297 return;
1298
1299 // Try to narrow wide and replicating recipes to single scalar recipes,
1300 // based on VPlan analysis. Only process blocks in the loop region for now,
1301 // without traversing into nested regions, as recipes in replicate regions
1302 // cannot be converted yet.
1305 for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
1307 continue;
1308 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
1309 if (RepR && (RepR->isSingleScalar() || RepR->isPredicated()))
1310 continue;
1311
1312 auto *RepOrWidenR = cast<VPSingleDefRecipe>(&R);
1313 if (RepR && isa<StoreInst>(RepR->getUnderlyingInstr()) &&
1314 vputils::isSingleScalar(RepR->getOperand(1))) {
1315 auto *Clone = new VPReplicateRecipe(
1316 RepOrWidenR->getUnderlyingInstr(), RepOrWidenR->operands(),
1317 true /*IsSingleScalar*/, nullptr /*Mask*/, *RepR /*Metadata*/);
1318 Clone->insertBefore(RepOrWidenR);
1320 {Clone->getOperand(0)});
1321 Ext->insertBefore(Clone);
1322 Clone->setOperand(0, Ext);
1323 RepR->eraseFromParent();
1324 continue;
1325 }
1326
1327 // Skip recipes that aren't single scalars or don't have only their
1328 // scalar results used. In the latter case, we would introduce extra
1329 // broadcasts.
1330 if (!vputils::isSingleScalar(RepOrWidenR) ||
1331 !all_of(RepOrWidenR->users(), [RepOrWidenR](const VPUser *U) {
1332 return U->usesScalars(RepOrWidenR) ||
1333 match(cast<VPRecipeBase>(U),
1334 m_ExtractLastElement(m_VPValue()));
1335 }))
1336 continue;
1337
1338 auto *Clone = new VPReplicateRecipe(RepOrWidenR->getUnderlyingInstr(),
1339 RepOrWidenR->operands(),
1340 true /*IsSingleScalar*/);
1341 Clone->insertBefore(RepOrWidenR);
1342 RepOrWidenR->replaceAllUsesWith(Clone);
1343 }
1344 }
1345}
1346
1347/// Try to see if all of \p Blend's masks share a common value logically and'ed
1348/// and remove it from the masks.
1350 if (Blend->isNormalized())
1351 return;
1352 VPValue *CommonEdgeMask;
1353 if (!match(Blend->getMask(0),
1354 m_LogicalAnd(m_VPValue(CommonEdgeMask), m_VPValue())))
1355 return;
1356 for (unsigned I = 0; I < Blend->getNumIncomingValues(); I++)
1357 if (!match(Blend->getMask(I),
1358 m_LogicalAnd(m_Specific(CommonEdgeMask), m_VPValue())))
1359 return;
1360 for (unsigned I = 0; I < Blend->getNumIncomingValues(); I++)
1361 Blend->setMask(I, Blend->getMask(I)->getDefiningRecipe()->getOperand(1));
1362}
1363
1364/// Normalize and simplify VPBlendRecipes. Should be run after simplifyRecipes
1365/// to make sure the masks are simplified.
1366static void simplifyBlends(VPlan &Plan) {
1369 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
1370 auto *Blend = dyn_cast<VPBlendRecipe>(&R);
1371 if (!Blend)
1372 continue;
1373
1374 removeCommonBlendMask(Blend);
1375
1376 // Try to remove redundant blend recipes.
1377 SmallPtrSet<VPValue *, 4> UniqueValues;
1378 if (Blend->isNormalized() || !match(Blend->getMask(0), m_False()))
1379 UniqueValues.insert(Blend->getIncomingValue(0));
1380 for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I)
1381 if (!match(Blend->getMask(I), m_False()))
1382 UniqueValues.insert(Blend->getIncomingValue(I));
1383
1384 if (UniqueValues.size() == 1) {
1385 Blend->replaceAllUsesWith(*UniqueValues.begin());
1386 Blend->eraseFromParent();
1387 continue;
1388 }
1389
1390 if (Blend->isNormalized())
1391 continue;
1392
1393 // Normalize the blend so its first incoming value is used as the initial
1394 // value with the others blended into it.
1395
1396 unsigned StartIndex = 0;
1397 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) {
1398 // If a value's mask is used only by the blend then is can be deadcoded.
1399 // TODO: Find the most expensive mask that can be deadcoded, or a mask
1400 // that's used by multiple blends where it can be removed from them all.
1401 VPValue *Mask = Blend->getMask(I);
1402 if (Mask->getNumUsers() == 1 && !match(Mask, m_False())) {
1403 StartIndex = I;
1404 break;
1405 }
1406 }
1407
1408 SmallVector<VPValue *, 4> OperandsWithMask;
1409 OperandsWithMask.push_back(Blend->getIncomingValue(StartIndex));
1410
1411 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) {
1412 if (I == StartIndex)
1413 continue;
1414 OperandsWithMask.push_back(Blend->getIncomingValue(I));
1415 OperandsWithMask.push_back(Blend->getMask(I));
1416 }
1417
1418 auto *NewBlend =
1419 new VPBlendRecipe(cast_or_null<PHINode>(Blend->getUnderlyingValue()),
1420 OperandsWithMask, Blend->getDebugLoc());
1421 NewBlend->insertBefore(&R);
1422
1423 VPValue *DeadMask = Blend->getMask(StartIndex);
1424 Blend->replaceAllUsesWith(NewBlend);
1425 Blend->eraseFromParent();
1427
1428 /// Simplify BLEND %a, %b, Not(%mask) -> BLEND %b, %a, %mask.
1429 VPValue *NewMask;
1430 if (NewBlend->getNumOperands() == 3 &&
1431 match(NewBlend->getMask(1), m_Not(m_VPValue(NewMask)))) {
1432 VPValue *Inc0 = NewBlend->getOperand(0);
1433 VPValue *Inc1 = NewBlend->getOperand(1);
1434 VPValue *OldMask = NewBlend->getOperand(2);
1435 NewBlend->setOperand(0, Inc1);
1436 NewBlend->setOperand(1, Inc0);
1437 NewBlend->setOperand(2, NewMask);
1438 if (OldMask->getNumUsers() == 0)
1439 cast<VPInstruction>(OldMask)->eraseFromParent();
1440 }
1441 }
1442 }
1443}
1444
1445/// Optimize the width of vector induction variables in \p Plan based on a known
1446/// constant Trip Count, \p BestVF and \p BestUF.
1448 ElementCount BestVF,
1449 unsigned BestUF) {
1450 // Only proceed if we have not completely removed the vector region.
1451 if (!Plan.getVectorLoopRegion())
1452 return false;
1453
1454 if (!Plan.getTripCount()->isLiveIn())
1455 return false;
1458 if (!TC || !BestVF.isFixed())
1459 return false;
1460
1461 // Calculate the minimum power-of-2 bit width that can fit the known TC, VF
1462 // and UF. Returns at least 8.
1463 auto ComputeBitWidth = [](APInt TC, uint64_t Align) {
1464 APInt AlignedTC =
1467 APInt MaxVal = AlignedTC - 1;
1468 return std::max<unsigned>(PowerOf2Ceil(MaxVal.getActiveBits()), 8);
1469 };
1470 unsigned NewBitWidth =
1471 ComputeBitWidth(TC->getValue(), BestVF.getKnownMinValue() * BestUF);
1472
1473 LLVMContext &Ctx = Plan.getContext();
1474 auto *NewIVTy = IntegerType::get(Ctx, NewBitWidth);
1475
1476 bool MadeChange = false;
1477
1478 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
1479 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
1480 auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
1481
1482 // Currently only handle canonical IVs as it is trivial to replace the start
1483 // and stop values, and we currently only perform the optimization when the
1484 // IV has a single use.
1485 if (!WideIV || !WideIV->isCanonical() ||
1486 WideIV->hasMoreThanOneUniqueUser() ||
1487 NewIVTy == WideIV->getScalarType())
1488 continue;
1489
1490 // Currently only handle cases where the single user is a header-mask
1491 // comparison with the backedge-taken-count.
1492 if (!match(*WideIV->user_begin(),
1493 m_ICmp(m_Specific(WideIV),
1496 continue;
1497
1498 // Update IV operands and comparison bound to use new narrower type.
1499 auto *NewStart = Plan.getOrAddLiveIn(ConstantInt::get(NewIVTy, 0));
1500 WideIV->setStartValue(NewStart);
1501 auto *NewStep = Plan.getOrAddLiveIn(ConstantInt::get(NewIVTy, 1));
1502 WideIV->setStepValue(NewStep);
1503
1504 auto *NewBTC = new VPWidenCastRecipe(
1505 Instruction::Trunc, Plan.getOrCreateBackedgeTakenCount(), NewIVTy);
1506 Plan.getVectorPreheader()->appendRecipe(NewBTC);
1507 auto *Cmp = cast<VPInstruction>(*WideIV->user_begin());
1508 Cmp->setOperand(1, NewBTC);
1509
1510 MadeChange = true;
1511 }
1512
1513 return MadeChange;
1514}
1515
1516/// Return true if \p Cond is known to be true for given \p BestVF and \p
1517/// BestUF.
1519 ElementCount BestVF, unsigned BestUF,
1520 ScalarEvolution &SE) {
1522 return any_of(Cond->getDefiningRecipe()->operands(), [&Plan, BestVF, BestUF,
1523 &SE](VPValue *C) {
1524 return isConditionTrueViaVFAndUF(C, Plan, BestVF, BestUF, SE);
1525 });
1526
1527 auto *CanIV = Plan.getCanonicalIV();
1529 m_Specific(CanIV->getBackedgeValue()),
1530 m_Specific(&Plan.getVectorTripCount()))))
1531 return false;
1532
1533 // The compare checks CanIV + VFxUF == vector trip count. The vector trip
1534 // count is not conveniently available as SCEV so far, so we compare directly
1535 // against the original trip count. This is stricter than necessary, as we
1536 // will only return true if the trip count == vector trip count.
1537 const SCEV *VectorTripCount =
1539 if (isa<SCEVCouldNotCompute>(VectorTripCount))
1540 VectorTripCount = vputils::getSCEVExprForVPValue(Plan.getTripCount(), SE);
1541 assert(!isa<SCEVCouldNotCompute>(VectorTripCount) &&
1542 "Trip count SCEV must be computable");
1543 ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF);
1544 const SCEV *C = SE.getElementCount(VectorTripCount->getType(), NumElements);
1545 return SE.isKnownPredicate(CmpInst::ICMP_EQ, VectorTripCount, C);
1546}
1547
1548/// Try to replace multiple active lane masks used for control flow with
1549/// a single, wide active lane mask instruction followed by multiple
1550/// extract subvector intrinsics. This applies to the active lane mask
1551/// instructions both in the loop and in the preheader.
1552/// Incoming values of all ActiveLaneMaskPHIs are updated to use the
1553/// new extracts from the first active lane mask, which has it's last
1554/// operand (multiplier) set to UF.
1556 unsigned UF) {
1557 if (!EnableWideActiveLaneMask || !VF.isVector() || UF == 1)
1558 return false;
1559
1560 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion();
1561 VPBasicBlock *ExitingVPBB = VectorRegion->getExitingBasicBlock();
1562 auto *Term = &ExitingVPBB->back();
1563
1564 using namespace llvm::VPlanPatternMatch;
1566 m_VPValue(), m_VPValue(), m_VPValue())))))
1567 return false;
1568
1569 auto *Header = cast<VPBasicBlock>(VectorRegion->getEntry());
1570 LLVMContext &Ctx = Plan.getContext();
1571
1572 auto ExtractFromALM = [&](VPInstruction *ALM,
1573 SmallVectorImpl<VPValue *> &Extracts) {
1574 DebugLoc DL = ALM->getDebugLoc();
1575 for (unsigned Part = 0; Part < UF; ++Part) {
1577 Ops.append({ALM, Plan.getOrAddLiveIn(
1578 ConstantInt::get(IntegerType::getInt64Ty(Ctx),
1579 VF.getKnownMinValue() * Part))});
1580 auto *Ext = new VPWidenIntrinsicRecipe(Intrinsic::vector_extract, Ops,
1582 Extracts[Part] = Ext;
1583 Ext->insertAfter(ALM);
1584 }
1585 };
1586
1587 // Create a list of each active lane mask phi, ordered by unroll part.
1589 for (VPRecipeBase &R : Header->phis()) {
1591 if (!Phi)
1592 continue;
1593 VPValue *Index = nullptr;
1594 match(Phi->getBackedgeValue(),
1596 assert(Index && "Expected index from ActiveLaneMask instruction");
1597
1598 auto *II = dyn_cast<VPInstruction>(Index);
1599 if (II && II->getOpcode() == VPInstruction::CanonicalIVIncrementForPart) {
1600 auto Part = cast<ConstantInt>(II->getOperand(1)->getLiveInIRValue());
1601 Phis[Part->getZExtValue()] = Phi;
1602 } else
1603 // Anything other than a CanonicalIVIncrementForPart is part 0
1604 Phis[0] = Phi;
1605 }
1606
1607 assert(all_of(Phis, [](VPActiveLaneMaskPHIRecipe *Phi) { return Phi; }) &&
1608 "Expected one VPActiveLaneMaskPHIRecipe for each unroll part");
1609
1610 auto *EntryALM = cast<VPInstruction>(Phis[0]->getStartValue());
1611 auto *LoopALM = cast<VPInstruction>(Phis[0]->getBackedgeValue());
1612
1613 assert((EntryALM->getOpcode() == VPInstruction::ActiveLaneMask &&
1614 LoopALM->getOpcode() == VPInstruction::ActiveLaneMask) &&
1615 "Expected incoming values of Phi to be ActiveLaneMasks");
1616
1617 // When using wide lane masks, the return type of the get.active.lane.mask
1618 // intrinsic is VF x UF (last operand).
1619 VPValue *ALMMultiplier =
1620 Plan.getOrAddLiveIn(ConstantInt::get(IntegerType::getInt64Ty(Ctx), UF));
1621 EntryALM->setOperand(2, ALMMultiplier);
1622 LoopALM->setOperand(2, ALMMultiplier);
1623
1624 // Create UF x extract vectors and insert into preheader.
1625 SmallVector<VPValue *> EntryExtracts(UF);
1626 ExtractFromALM(EntryALM, EntryExtracts);
1627
1628 // Create UF x extract vectors and insert before the loop compare & branch,
1629 // updating the compare to use the first extract.
1630 SmallVector<VPValue *> LoopExtracts(UF);
1631 ExtractFromALM(LoopALM, LoopExtracts);
1632 VPInstruction *Not = cast<VPInstruction>(Term->getOperand(0));
1633 Not->setOperand(0, LoopExtracts[0]);
1634
1635 // Update the incoming values of active lane mask phis.
1636 for (unsigned Part = 0; Part < UF; ++Part) {
1637 Phis[Part]->setStartValue(EntryExtracts[Part]);
1638 Phis[Part]->setBackedgeValue(LoopExtracts[Part]);
1639 }
1640
1641 return true;
1642}
1643
1644/// Try to simplify the branch condition of \p Plan. This may restrict the
1645/// resulting plan to \p BestVF and \p BestUF.
1647 unsigned BestUF,
1649 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion();
1650 VPBasicBlock *ExitingVPBB = VectorRegion->getExitingBasicBlock();
1651 auto *Term = &ExitingVPBB->back();
1652 VPValue *Cond;
1653 ScalarEvolution &SE = *PSE.getSE();
1654 if (match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) ||
1656 m_VPValue(), m_VPValue(), m_VPValue()))))) {
1657 // Try to simplify the branch condition if TC <= VF * UF when the latch
1658 // terminator is BranchOnCount or BranchOnCond where the input is
1659 // Not(ActiveLaneMask).
1660 const SCEV *TripCount =
1662 assert(!isa<SCEVCouldNotCompute>(TripCount) &&
1663 "Trip count SCEV must be computable");
1664 ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF);
1665 const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements);
1666 if (TripCount->isZero() ||
1667 !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C))
1668 return false;
1669 } else if (match(Term, m_BranchOnCond(m_VPValue(Cond)))) {
1670 // For BranchOnCond, check if we can prove the condition to be true using VF
1671 // and UF.
1672 if (!isConditionTrueViaVFAndUF(Cond, Plan, BestVF, BestUF, SE))
1673 return false;
1674 } else {
1675 return false;
1676 }
1677
1678 // The vector loop region only executes once. If possible, completely remove
1679 // the region, otherwise replace the terminator controlling the latch with
1680 // (BranchOnCond true).
1681 // TODO: VPWidenIntOrFpInductionRecipe is only partially supported; add
1682 // support for other non-canonical widen induction recipes (e.g.,
1683 // VPWidenPointerInductionRecipe).
1684 auto *Header = cast<VPBasicBlock>(VectorRegion->getEntry());
1685 if (all_of(Header->phis(), [](VPRecipeBase &Phi) {
1686 if (auto *R = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi))
1687 return R->isCanonical();
1688 return isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe,
1689 VPFirstOrderRecurrencePHIRecipe, VPPhi>(&Phi);
1690 })) {
1691 for (VPRecipeBase &HeaderR : make_early_inc_range(Header->phis())) {
1692 if (auto *R = dyn_cast<VPWidenIntOrFpInductionRecipe>(&HeaderR)) {
1693 VPBuilder Builder(Plan.getVectorPreheader());
1694 VPValue *StepV = Builder.createNaryOp(VPInstruction::StepVector, {},
1695 R->getScalarType());
1696 HeaderR.getVPSingleValue()->replaceAllUsesWith(StepV);
1697 HeaderR.eraseFromParent();
1698 continue;
1699 }
1700 auto *Phi = cast<VPPhiAccessors>(&HeaderR);
1701 HeaderR.getVPSingleValue()->replaceAllUsesWith(Phi->getIncomingValue(0));
1702 HeaderR.eraseFromParent();
1703 }
1704
1705 VPBlockBase *Preheader = VectorRegion->getSinglePredecessor();
1706 VPBlockBase *Exit = VectorRegion->getSingleSuccessor();
1707 VPBlockUtils::disconnectBlocks(Preheader, VectorRegion);
1708 VPBlockUtils::disconnectBlocks(VectorRegion, Exit);
1709
1710 for (VPBlockBase *B : vp_depth_first_shallow(VectorRegion->getEntry()))
1711 B->setParent(nullptr);
1712
1713 VPBlockUtils::connectBlocks(Preheader, Header);
1714 VPBlockUtils::connectBlocks(ExitingVPBB, Exit);
1716 } else {
1717 // The vector region contains header phis for which we cannot remove the
1718 // loop region yet.
1719 auto *BOC = new VPInstruction(VPInstruction::BranchOnCond, {Plan.getTrue()},
1720 Term->getDebugLoc());
1721 ExitingVPBB->appendRecipe(BOC);
1722 }
1723
1724 Term->eraseFromParent();
1725
1726 return true;
1727}
1728
1730 unsigned BestUF,
1732 assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
1733 assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
1734
1735 bool MadeChange = tryToReplaceALMWithWideALM(Plan, BestVF, BestUF);
1736 MadeChange |= simplifyBranchConditionForVFAndUF(Plan, BestVF, BestUF, PSE);
1737 MadeChange |= optimizeVectorInductionWidthForTCAndVFUF(Plan, BestVF, BestUF);
1738
1739 if (MadeChange) {
1740 Plan.setVF(BestVF);
1741 assert(Plan.getUF() == BestUF && "BestUF must match the Plan's UF");
1742 }
1743 // TODO: Further simplifications are possible
1744 // 1. Replace inductions with constants.
1745 // 2. Replace vector loop region with VPBasicBlock.
1746}
1747
1748/// Sink users of \p FOR after the recipe defining the previous value \p
1749/// Previous of the recurrence. \returns true if all users of \p FOR could be
1750/// re-arranged as needed or false if it is not possible.
1751static bool
1753 VPRecipeBase *Previous,
1754 VPDominatorTree &VPDT) {
1755 // Collect recipes that need sinking.
1758 Seen.insert(Previous);
1759 auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) {
1760 // The previous value must not depend on the users of the recurrence phi. In
1761 // that case, FOR is not a fixed order recurrence.
1762 if (SinkCandidate == Previous)
1763 return false;
1764
1765 if (isa<VPHeaderPHIRecipe>(SinkCandidate) ||
1766 !Seen.insert(SinkCandidate).second ||
1767 VPDT.properlyDominates(Previous, SinkCandidate))
1768 return true;
1769
1770 if (SinkCandidate->mayHaveSideEffects())
1771 return false;
1772
1773 WorkList.push_back(SinkCandidate);
1774 return true;
1775 };
1776
1777 // Recursively sink users of FOR after Previous.
1778 WorkList.push_back(FOR);
1779 for (unsigned I = 0; I != WorkList.size(); ++I) {
1780 VPRecipeBase *Current = WorkList[I];
1781 assert(Current->getNumDefinedValues() == 1 &&
1782 "only recipes with a single defined value expected");
1783
1784 for (VPUser *User : Current->getVPSingleValue()->users()) {
1785 if (!TryToPushSinkCandidate(cast<VPRecipeBase>(User)))
1786 return false;
1787 }
1788 }
1789
1790 // Keep recipes to sink ordered by dominance so earlier instructions are
1791 // processed first.
1792 sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
1793 return VPDT.properlyDominates(A, B);
1794 });
1795
1796 for (VPRecipeBase *SinkCandidate : WorkList) {
1797 if (SinkCandidate == FOR)
1798 continue;
1799
1800 SinkCandidate->moveAfter(Previous);
1801 Previous = SinkCandidate;
1802 }
1803 return true;
1804}
1805
1806/// Try to hoist \p Previous and its operands before all users of \p FOR.
1808 VPRecipeBase *Previous,
1809 VPDominatorTree &VPDT) {
1810 if (Previous->mayHaveSideEffects() || Previous->mayReadFromMemory())
1811 return false;
1812
1813 // Collect recipes that need hoisting.
1814 SmallVector<VPRecipeBase *> HoistCandidates;
1816 VPRecipeBase *HoistPoint = nullptr;
1817 // Find the closest hoist point by looking at all users of FOR and selecting
1818 // the recipe dominating all other users.
1819 for (VPUser *U : FOR->users()) {
1820 auto *R = cast<VPRecipeBase>(U);
1821 if (!HoistPoint || VPDT.properlyDominates(R, HoistPoint))
1822 HoistPoint = R;
1823 }
1824 assert(all_of(FOR->users(),
1825 [&VPDT, HoistPoint](VPUser *U) {
1826 auto *R = cast<VPRecipeBase>(U);
1827 return HoistPoint == R ||
1828 VPDT.properlyDominates(HoistPoint, R);
1829 }) &&
1830 "HoistPoint must dominate all users of FOR");
1831
1832 auto NeedsHoisting = [HoistPoint, &VPDT,
1833 &Visited](VPValue *HoistCandidateV) -> VPRecipeBase * {
1834 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe();
1835 if (!HoistCandidate)
1836 return nullptr;
1837 VPRegionBlock *EnclosingLoopRegion =
1838 HoistCandidate->getParent()->getEnclosingLoopRegion();
1839 assert((!HoistCandidate->getParent()->getParent() ||
1840 HoistCandidate->getParent()->getParent() == EnclosingLoopRegion) &&
1841 "CFG in VPlan should still be flat, without replicate regions");
1842 // Hoist candidate was already visited, no need to hoist.
1843 if (!Visited.insert(HoistCandidate).second)
1844 return nullptr;
1845
1846 // Candidate is outside loop region or a header phi, dominates FOR users w/o
1847 // hoisting.
1848 if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(HoistCandidate))
1849 return nullptr;
1850
1851 // If we reached a recipe that dominates HoistPoint, we don't need to
1852 // hoist the recipe.
1853 if (VPDT.properlyDominates(HoistCandidate, HoistPoint))
1854 return nullptr;
1855 return HoistCandidate;
1856 };
1857 auto CanHoist = [&](VPRecipeBase *HoistCandidate) {
1858 // Avoid hoisting candidates with side-effects, as we do not yet analyze
1859 // associated dependencies.
1860 return !HoistCandidate->mayHaveSideEffects();
1861 };
1862
1863 if (!NeedsHoisting(Previous->getVPSingleValue()))
1864 return true;
1865
1866 // Recursively try to hoist Previous and its operands before all users of FOR.
1867 HoistCandidates.push_back(Previous);
1868
1869 for (unsigned I = 0; I != HoistCandidates.size(); ++I) {
1870 VPRecipeBase *Current = HoistCandidates[I];
1871 assert(Current->getNumDefinedValues() == 1 &&
1872 "only recipes with a single defined value expected");
1873 if (!CanHoist(Current))
1874 return false;
1875
1876 for (VPValue *Op : Current->operands()) {
1877 // If we reach FOR, it means the original Previous depends on some other
1878 // recurrence that in turn depends on FOR. If that is the case, we would
1879 // also need to hoist recipes involving the other FOR, which may break
1880 // dependencies.
1881 if (Op == FOR)
1882 return false;
1883
1884 if (auto *R = NeedsHoisting(Op))
1885 HoistCandidates.push_back(R);
1886 }
1887 }
1888
1889 // Order recipes to hoist by dominance so earlier instructions are processed
1890 // first.
1891 sort(HoistCandidates, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
1892 return VPDT.properlyDominates(A, B);
1893 });
1894
1895 for (VPRecipeBase *HoistCandidate : HoistCandidates) {
1896 HoistCandidate->moveBefore(*HoistPoint->getParent(),
1897 HoistPoint->getIterator());
1898 }
1899
1900 return true;
1901}
1902
1904 VPBuilder &LoopBuilder) {
1905 VPDominatorTree VPDT;
1906 VPDT.recalculate(Plan);
1907
1909 for (VPRecipeBase &R :
1912 RecurrencePhis.push_back(FOR);
1913
1914 for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) {
1916 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
1917 // Fixed-order recurrences do not contain cycles, so this loop is guaranteed
1918 // to terminate.
1919 while (auto *PrevPhi =
1921 assert(PrevPhi->getParent() == FOR->getParent());
1922 assert(SeenPhis.insert(PrevPhi).second);
1923 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
1924 }
1925
1926 if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) &&
1927 !hoistPreviousBeforeFORUsers(FOR, Previous, VPDT))
1928 return false;
1929
1930 // Introduce a recipe to combine the incoming and previous values of a
1931 // fixed-order recurrence.
1932 VPBasicBlock *InsertBlock = Previous->getParent();
1933 if (isa<VPHeaderPHIRecipe>(Previous))
1934 LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
1935 else
1936 LoopBuilder.setInsertPoint(InsertBlock,
1937 std::next(Previous->getIterator()));
1938
1939 auto *RecurSplice =
1941 {FOR, FOR->getBackedgeValue()});
1942
1943 FOR->replaceAllUsesWith(RecurSplice);
1944 // Set the first operand of RecurSplice to FOR again, after replacing
1945 // all users.
1946 RecurSplice->setOperand(0, FOR);
1947 }
1948 return true;
1949}
1950
1952 for (VPRecipeBase &R :
1954 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
1955 if (!PhiR)
1956 continue;
1957 RecurKind RK = PhiR->getRecurrenceKind();
1958 if (RK != RecurKind::Add && RK != RecurKind::Mul && RK != RecurKind::Sub &&
1960 continue;
1961
1962 for (VPUser *U : collectUsersRecursively(PhiR))
1963 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) {
1964 RecWithFlags->dropPoisonGeneratingFlags();
1965 }
1966 }
1967}
1968
1969namespace {
1970struct VPCSEDenseMapInfo : public DenseMapInfo<VPSingleDefRecipe *> {
1971 static bool isSentinel(const VPSingleDefRecipe *Def) {
1972 return Def == getEmptyKey() || Def == getTombstoneKey();
1973 }
1974
1975 /// Get any instruction opcode or intrinsic ID data embedded in recipe \p R.
1976 /// Returns an optional pair, where the first element indicates whether it is
1977 /// an intrinsic ID.
1978 static std::optional<std::pair<bool, unsigned>>
1979 getOpcodeOrIntrinsicID(const VPSingleDefRecipe *R) {
1980 return TypeSwitch<const VPSingleDefRecipe *,
1981 std::optional<std::pair<bool, unsigned>>>(R)
1984 [](auto *I) { return std::make_pair(false, I->getOpcode()); })
1985 .Case<VPWidenIntrinsicRecipe>([](auto *I) {
1986 return std::make_pair(true, I->getVectorIntrinsicID());
1987 })
1988 .Default([](auto *) { return std::nullopt; });
1989 }
1990
1991 /// Returns true if recipe \p Def can be safely handed for CSE.
1992 static bool canHandle(const VPSingleDefRecipe *Def) {
1993 // We can extend the list of handled recipes in the future,
1994 // provided we account for the data embedded in them while checking for
1995 // equality or hashing.
1996 auto C = getOpcodeOrIntrinsicID(Def);
1997
1998 // The issue with (Insert|Extract)Value is that the index of the
1999 // insert/extract is not a proper operand in LLVM IR, and hence also not in
2000 // VPlan.
2001 if (!C || (!C->first && (C->second == Instruction::InsertValue ||
2002 C->second == Instruction::ExtractValue)))
2003 return false;
2004
2005 // During CSE, we can only handle recipes that don't read from memory: if
2006 // they read from memory, there could be an intervening write to memory
2007 // before the next instance is CSE'd, leading to an incorrect result.
2008 return !Def->mayReadFromMemory();
2009 }
2010
2011 /// Hash the underlying data of \p Def.
2012 static unsigned getHashValue(const VPSingleDefRecipe *Def) {
2013 const VPlan *Plan = Def->getParent()->getPlan();
2014 VPTypeAnalysis TypeInfo(*Plan);
2015 hash_code Result = hash_combine(
2016 Def->getVPDefID(), getOpcodeOrIntrinsicID(Def),
2017 TypeInfo.inferScalarType(Def), vputils::isSingleScalar(Def),
2018 hash_combine_range(Def->operands()));
2019 if (auto *RFlags = dyn_cast<VPRecipeWithIRFlags>(Def))
2020 if (RFlags->hasPredicate())
2021 return hash_combine(Result, RFlags->getPredicate());
2022 return Result;
2023 }
2024
2025 /// Check equality of underlying data of \p L and \p R.
2026 static bool isEqual(const VPSingleDefRecipe *L, const VPSingleDefRecipe *R) {
2027 if (isSentinel(L) || isSentinel(R))
2028 return L == R;
2029 if (L->getVPDefID() != R->getVPDefID() ||
2030 getOpcodeOrIntrinsicID(L) != getOpcodeOrIntrinsicID(R) ||
2032 !equal(L->operands(), R->operands()))
2033 return false;
2034 if (auto *LFlags = dyn_cast<VPRecipeWithIRFlags>(L))
2035 if (LFlags->hasPredicate() &&
2036 LFlags->getPredicate() !=
2037 cast<VPRecipeWithIRFlags>(R)->getPredicate())
2038 return false;
2039 const VPlan *Plan = L->getParent()->getPlan();
2040 VPTypeAnalysis TypeInfo(*Plan);
2041 return TypeInfo.inferScalarType(L) == TypeInfo.inferScalarType(R);
2042 }
2043};
2044} // end anonymous namespace
2045
2046/// Perform a common-subexpression-elimination of VPSingleDefRecipes on the \p
2047/// Plan.
2049 VPDominatorTree VPDT(Plan);
2051
2053 vp_depth_first_deep(Plan.getEntry()))) {
2054 for (VPRecipeBase &R : *VPBB) {
2055 auto *Def = dyn_cast<VPSingleDefRecipe>(&R);
2056 if (!Def || !VPCSEDenseMapInfo::canHandle(Def))
2057 continue;
2058 if (VPSingleDefRecipe *V = CSEMap.lookup(Def)) {
2059 // V must dominate Def for a valid replacement.
2060 if (!VPDT.dominates(V->getParent(), VPBB))
2061 continue;
2062 // Only keep flags present on both V and Def.
2063 if (auto *RFlags = dyn_cast<VPRecipeWithIRFlags>(V))
2064 RFlags->intersectFlags(*cast<VPRecipeWithIRFlags>(Def));
2065 Def->replaceAllUsesWith(V);
2066 continue;
2067 }
2068 CSEMap[Def] = Def;
2069 }
2070 }
2071}
2072
2073/// Move loop-invariant recipes out of the vector loop region in \p Plan.
2074static void licm(VPlan &Plan) {
2075 VPBasicBlock *Preheader = Plan.getVectorPreheader();
2076
2077 // Return true if we do not know how to (mechanically) hoist a given recipe
2078 // out of a loop region. Does not address legality concerns such as aliasing
2079 // or speculation safety.
2080 auto CannotHoistRecipe = [](VPRecipeBase &R) {
2081 // Allocas cannot be hoisted.
2082 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
2083 return RepR && RepR->getOpcode() == Instruction::Alloca;
2084 };
2085
2086 // Hoist any loop invariant recipes from the vector loop region to the
2087 // preheader. Preform a shallow traversal of the vector loop region, to
2088 // exclude recipes in replicate regions.
2089 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
2091 vp_depth_first_shallow(LoopRegion->getEntry()))) {
2092 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
2093 if (CannotHoistRecipe(R))
2094 continue;
2095 // TODO: Relax checks in the future, e.g. we could also hoist reads, if
2096 // their memory location is not modified in the vector loop.
2097 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() ||
2098 any_of(R.operands(), [](VPValue *Op) {
2099 return !Op->isDefinedOutsideLoopRegions();
2100 }))
2101 continue;
2102 R.moveBefore(*Preheader, Preheader->end());
2103 }
2104 }
2105}
2106
2108 VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) {
2109 // Keep track of created truncates, so they can be re-used. Note that we
2110 // cannot use RAUW after creating a new truncate, as this would could make
2111 // other uses have different types for their operands, making them invalidly
2112 // typed.
2114 VPTypeAnalysis TypeInfo(Plan);
2115 VPBasicBlock *PH = Plan.getVectorPreheader();
2118 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
2121 &R))
2122 continue;
2123
2124 VPValue *ResultVPV = R.getVPSingleValue();
2125 auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue());
2126 unsigned NewResSizeInBits = MinBWs.lookup(UI);
2127 if (!NewResSizeInBits)
2128 continue;
2129
2130 // If the value wasn't vectorized, we must maintain the original scalar
2131 // type. Skip those here, after incrementing NumProcessedRecipes. Also
2132 // skip casts which do not need to be handled explicitly here, as
2133 // redundant casts will be removed during recipe simplification.
2135 continue;
2136
2137 Type *OldResTy = TypeInfo.inferScalarType(ResultVPV);
2138 unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits();
2139 assert(OldResTy->isIntegerTy() && "only integer types supported");
2140 (void)OldResSizeInBits;
2141
2142 auto *NewResTy = IntegerType::get(Plan.getContext(), NewResSizeInBits);
2143
2144 // Any wrapping introduced by shrinking this operation shouldn't be
2145 // considered undefined behavior. So, we can't unconditionally copy
2146 // arithmetic wrapping flags to VPW.
2147 if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R))
2148 VPW->dropPoisonGeneratingFlags();
2149
2150 if (OldResSizeInBits != NewResSizeInBits &&
2151 !match(&R, m_ICmp(m_VPValue(), m_VPValue()))) {
2152 // Extend result to original width.
2153 auto *Ext =
2154 new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy);
2155 Ext->insertAfter(&R);
2156 ResultVPV->replaceAllUsesWith(Ext);
2157 Ext->setOperand(0, ResultVPV);
2158 assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?");
2159 } else {
2160 assert(match(&R, m_ICmp(m_VPValue(), m_VPValue())) &&
2161 "Only ICmps should not need extending the result.");
2162 }
2163
2164 assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed");
2166 continue;
2167
2168 // Shrink operands by introducing truncates as needed.
2169 unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0;
2170 for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
2171 auto *Op = R.getOperand(Idx);
2172 unsigned OpSizeInBits =
2174 if (OpSizeInBits == NewResSizeInBits)
2175 continue;
2176 assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate");
2177 auto [ProcessedIter, IterIsEmpty] = ProcessedTruncs.try_emplace(Op);
2178 VPWidenCastRecipe *NewOp =
2179 IterIsEmpty
2180 ? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy)
2181 : ProcessedIter->second;
2182 R.setOperand(Idx, NewOp);
2183 if (!IterIsEmpty)
2184 continue;
2185 ProcessedIter->second = NewOp;
2186 if (!Op->isLiveIn()) {
2187 NewOp->insertBefore(&R);
2188 } else {
2189 PH->appendRecipe(NewOp);
2190 }
2191 }
2192
2193 }
2194 }
2195}
2196
2200 VPValue *Cond;
2201 if (VPBB->getNumSuccessors() != 2 || VPBB == Plan.getEntry() ||
2202 !match(&VPBB->back(), m_BranchOnCond(m_VPValue(Cond))))
2203 continue;
2204
2205 unsigned RemovedIdx;
2206 if (match(Cond, m_True()))
2207 RemovedIdx = 1;
2208 else if (match(Cond, m_False()))
2209 RemovedIdx = 0;
2210 else
2211 continue;
2212
2213 VPBasicBlock *RemovedSucc =
2214 cast<VPBasicBlock>(VPBB->getSuccessors()[RemovedIdx]);
2215 assert(count(RemovedSucc->getPredecessors(), VPBB) == 1 &&
2216 "There must be a single edge between VPBB and its successor");
2217 // Values coming from VPBB into phi recipes of RemoveSucc are removed from
2218 // these recipes.
2219 for (VPRecipeBase &R : RemovedSucc->phis())
2220 cast<VPPhiAccessors>(&R)->removeIncomingValueFor(VPBB);
2221
2222 // Disconnect blocks and remove the terminator. RemovedSucc will be deleted
2223 // automatically on VPlan destruction if it becomes unreachable.
2224 VPBlockUtils::disconnectBlocks(VPBB, RemovedSucc);
2225 VPBB->back().eraseFromParent();
2226 }
2227}
2228
2247
2248// Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace
2249// the loop terminator with a branch-on-cond recipe with the negated
2250// active-lane-mask as operand. Note that this turns the loop into an
2251// uncountable one. Only the existing terminator is replaced, all other existing
2252// recipes/users remain unchanged, except for poison-generating flags being
2253// dropped from the canonical IV increment. Return the created
2254// VPActiveLaneMaskPHIRecipe.
2255//
2256// The function uses the following definitions:
2257//
2258// %TripCount = DataWithControlFlowWithoutRuntimeCheck ?
2259// calculate-trip-count-minus-VF (original TC) : original TC
2260// %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ?
2261// CanonicalIVPhi : CanonicalIVIncrement
2262// %StartV is the canonical induction start value.
2263//
2264// The function adds the following recipes:
2265//
2266// vector.ph:
2267// %TripCount = calculate-trip-count-minus-VF (original TC)
2268// [if DataWithControlFlowWithoutRuntimeCheck]
2269// %EntryInc = canonical-iv-increment-for-part %StartV
2270// %EntryALM = active-lane-mask %EntryInc, %TripCount
2271//
2272// vector.body:
2273// ...
2274// %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ]
2275// ...
2276// %InLoopInc = canonical-iv-increment-for-part %IncrementValue
2277// %ALM = active-lane-mask %InLoopInc, TripCount
2278// %Negated = Not %ALM
2279// branch-on-cond %Negated
2280//
2283 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
2284 VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
2285 auto *CanonicalIVPHI = Plan.getCanonicalIV();
2286 VPValue *StartV = CanonicalIVPHI->getStartValue();
2287
2288 auto *CanonicalIVIncrement =
2289 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
2290 // TODO: Check if dropping the flags is needed if
2291 // !DataAndControlFlowWithoutRuntimeCheck.
2292 CanonicalIVIncrement->dropPoisonGeneratingFlags();
2293 DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
2294 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since
2295 // we have to take unrolling into account. Each part needs to start at
2296 // Part * VF
2297 auto *VecPreheader = Plan.getVectorPreheader();
2298 VPBuilder Builder(VecPreheader);
2299
2300 // Create the ActiveLaneMask instruction using the correct start values.
2301 VPValue *TC = Plan.getTripCount();
2302
2303 VPValue *TripCount, *IncrementValue;
2305 // When the loop is guarded by a runtime overflow check for the loop
2306 // induction variable increment by VF, we can increment the value before
2307 // the get.active.lane mask and use the unmodified tripcount.
2308 IncrementValue = CanonicalIVIncrement;
2309 TripCount = TC;
2310 } else {
2311 // When avoiding a runtime check, the active.lane.mask inside the loop
2312 // uses a modified trip count and the induction variable increment is
2313 // done after the active.lane.mask intrinsic is called.
2314 IncrementValue = CanonicalIVPHI;
2315 TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF,
2316 {TC}, DL);
2317 }
2318 auto *EntryIncrement = Builder.createOverflowingOp(
2319 VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL,
2320 "index.part.next");
2321
2322 // Create the active lane mask instruction in the VPlan preheader.
2323 VPValue *ALMMultiplier = Plan.getOrAddLiveIn(
2324 ConstantInt::get(Plan.getCanonicalIV()->getScalarType(), 1));
2325 auto *EntryALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask,
2326 {EntryIncrement, TC, ALMMultiplier}, DL,
2327 "active.lane.mask.entry");
2328
2329 // Now create the ActiveLaneMaskPhi recipe in the main loop using the
2330 // preheader ActiveLaneMask instruction.
2331 auto *LaneMaskPhi =
2333 LaneMaskPhi->insertAfter(CanonicalIVPHI);
2334
2335 // Create the active lane mask for the next iteration of the loop before the
2336 // original terminator.
2337 VPRecipeBase *OriginalTerminator = EB->getTerminator();
2338 Builder.setInsertPoint(OriginalTerminator);
2339 auto *InLoopIncrement =
2340 Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart,
2341 {IncrementValue}, {false, false}, DL);
2342 auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask,
2343 {InLoopIncrement, TripCount, ALMMultiplier},
2344 DL, "active.lane.mask.next");
2345 LaneMaskPhi->addOperand(ALM);
2346
2347 // Replace the original terminator with BranchOnCond. We have to invert the
2348 // mask here because a true condition means jumping to the exit block.
2349 auto *NotMask = Builder.createNot(ALM, DL);
2350 Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL);
2351 OriginalTerminator->eraseFromParent();
2352 return LaneMaskPhi;
2353}
2354
2355/// Collect the header mask with the pattern:
2356/// (ICMP_ULE, WideCanonicalIV, backedge-taken-count)
2357/// TODO: Introduce explicit recipe for header-mask instead of searching
2358/// for the header-mask pattern manually.
2360 SmallVector<VPValue *> WideCanonicalIVs;
2361 auto *FoundWidenCanonicalIVUser = find_if(Plan.getCanonicalIV()->users(),
2365 "Must have at most one VPWideCanonicalIVRecipe");
2366 if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) {
2367 auto *WideCanonicalIV =
2368 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
2369 WideCanonicalIVs.push_back(WideCanonicalIV);
2370 }
2371
2372 // Also include VPWidenIntOrFpInductionRecipes that represent a widened
2373 // version of the canonical induction.
2374 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
2375 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
2376 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
2377 if (WidenOriginalIV && WidenOriginalIV->isCanonical())
2378 WideCanonicalIVs.push_back(WidenOriginalIV);
2379 }
2380
2381 // Walk users of wide canonical IVs and find the single compare of the form
2382 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count).
2383 VPSingleDefRecipe *HeaderMask = nullptr;
2384 for (auto *Wide : WideCanonicalIVs) {
2385 for (VPUser *U : SmallVector<VPUser *>(Wide->users())) {
2386 auto *VPI = dyn_cast<VPInstruction>(U);
2387 if (!VPI || !vputils::isHeaderMask(VPI, Plan))
2388 continue;
2389
2390 assert(VPI->getOperand(0) == Wide &&
2391 "WidenCanonicalIV must be the first operand of the compare");
2392 assert(!HeaderMask && "Multiple header masks found?");
2393 HeaderMask = VPI;
2394 }
2395 }
2396 return HeaderMask;
2397}
2398
2400 VPlan &Plan, bool UseActiveLaneMaskForControlFlow,
2403 UseActiveLaneMaskForControlFlow) &&
2404 "DataAndControlFlowWithoutRuntimeCheck implies "
2405 "UseActiveLaneMaskForControlFlow");
2406
2407 auto *FoundWidenCanonicalIVUser = find_if(Plan.getCanonicalIV()->users(),
2409 assert(FoundWidenCanonicalIVUser &&
2410 "Must have widened canonical IV when tail folding!");
2411 VPSingleDefRecipe *HeaderMask = findHeaderMask(Plan);
2412 auto *WideCanonicalIV =
2413 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
2414 VPSingleDefRecipe *LaneMask;
2415 if (UseActiveLaneMaskForControlFlow) {
2418 } else {
2419 VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV);
2420 VPValue *ALMMultiplier = Plan.getOrAddLiveIn(
2421 ConstantInt::get(Plan.getCanonicalIV()->getScalarType(), 1));
2422 LaneMask =
2423 B.createNaryOp(VPInstruction::ActiveLaneMask,
2424 {WideCanonicalIV, Plan.getTripCount(), ALMMultiplier},
2425 nullptr, "active.lane.mask");
2426 }
2427
2428 // Walk users of WideCanonicalIV and replace the header mask of the form
2429 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an active-lane-mask,
2430 // removing the old one to ensure there is always only a single header mask.
2431 HeaderMask->replaceAllUsesWith(LaneMask);
2432 HeaderMask->eraseFromParent();
2433}
2434
2435/// Try to optimize a \p CurRecipe masked by \p HeaderMask to a corresponding
2436/// EVL-based recipe without the header mask. Returns nullptr if no EVL-based
2437/// recipe could be created.
2438/// \p HeaderMask Header Mask.
2439/// \p CurRecipe Recipe to be transform.
2440/// \p TypeInfo VPlan-based type analysis.
2441/// \p AllOneMask The vector mask parameter of vector-predication intrinsics.
2442/// \p EVL The explicit vector length parameter of vector-predication
2443/// intrinsics.
2445 VPRecipeBase &CurRecipe,
2446 VPTypeAnalysis &TypeInfo,
2447 VPValue &AllOneMask, VPValue &EVL) {
2448 // FIXME: Don't transform recipes to EVL recipes if they're not masked by the
2449 // header mask.
2450 auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * {
2451 assert(OrigMask && "Unmasked recipe when folding tail");
2452 // HeaderMask will be handled using EVL.
2453 VPValue *Mask;
2454 if (match(OrigMask, m_LogicalAnd(m_Specific(HeaderMask), m_VPValue(Mask))))
2455 return Mask;
2456 return HeaderMask == OrigMask ? nullptr : OrigMask;
2457 };
2458
2459 /// Adjust any end pointers so that they point to the end of EVL lanes not VF.
2460 auto GetNewAddr = [&CurRecipe, &EVL](VPValue *Addr) -> VPValue * {
2461 auto *EndPtr = dyn_cast<VPVectorEndPointerRecipe>(Addr);
2462 if (!EndPtr)
2463 return Addr;
2464 assert(EndPtr->getOperand(1) == &EndPtr->getParent()->getPlan()->getVF() &&
2465 "VPVectorEndPointerRecipe with non-VF VF operand?");
2466 assert(
2467 all_of(EndPtr->users(),
2468 [](VPUser *U) {
2469 return cast<VPWidenMemoryRecipe>(U)->isReverse();
2470 }) &&
2471 "VPVectorEndPointRecipe not used by reversed widened memory recipe?");
2472 VPVectorEndPointerRecipe *EVLAddr = EndPtr->clone();
2473 EVLAddr->insertBefore(&CurRecipe);
2474 EVLAddr->setOperand(1, &EVL);
2475 return EVLAddr;
2476 };
2477
2480 VPValue *NewMask = GetNewMask(L->getMask());
2481 VPValue *NewAddr = GetNewAddr(L->getAddr());
2482 return new VPWidenLoadEVLRecipe(*L, NewAddr, EVL, NewMask);
2483 })
2484 .Case<VPWidenStoreRecipe>([&](VPWidenStoreRecipe *S) {
2485 VPValue *NewMask = GetNewMask(S->getMask());
2486 VPValue *NewAddr = GetNewAddr(S->getAddr());
2487 return new VPWidenStoreEVLRecipe(*S, NewAddr, EVL, NewMask);
2488 })
2489 .Case<VPInterleaveRecipe>([&](VPInterleaveRecipe *IR) {
2490 VPValue *NewMask = GetNewMask(IR->getMask());
2491 return new VPInterleaveEVLRecipe(*IR, EVL, NewMask);
2492 })
2493 .Case<VPReductionRecipe>([&](VPReductionRecipe *Red) {
2494 VPValue *NewMask = GetNewMask(Red->getCondOp());
2495 return new VPReductionEVLRecipe(*Red, EVL, NewMask);
2496 })
2497 .Case<VPInstruction>([&](VPInstruction *VPI) -> VPRecipeBase * {
2498 VPValue *LHS, *RHS;
2499 // Transform select with a header mask condition
2500 // select(header_mask, LHS, RHS)
2501 // into vector predication merge.
2502 // vp.merge(all-true, LHS, RHS, EVL)
2503 if (!match(VPI, m_Select(m_Specific(HeaderMask), m_VPValue(LHS),
2504 m_VPValue(RHS))))
2505 return nullptr;
2506 // Use all true as the condition because this transformation is
2507 // limited to selects whose condition is a header mask.
2508 return new VPWidenIntrinsicRecipe(
2509 Intrinsic::vp_merge, {&AllOneMask, LHS, RHS, &EVL},
2510 TypeInfo.inferScalarType(LHS), VPI->getDebugLoc());
2511 })
2512 .Default([&](VPRecipeBase *R) { return nullptr; });
2513}
2514
2515/// Replace recipes with their EVL variants.
2517 VPTypeAnalysis TypeInfo(Plan);
2518 VPValue *AllOneMask = Plan.getTrue();
2519 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
2520 VPBasicBlock *Header = LoopRegion->getEntryBasicBlock();
2521
2522 assert(all_of(Plan.getVF().users(),
2525 "User of VF that we can't transform to EVL.");
2526 Plan.getVF().replaceUsesWithIf(&EVL, [](VPUser &U, unsigned Idx) {
2528 });
2529
2530 assert(all_of(Plan.getVFxUF().users(),
2531 [&Plan](VPUser *U) {
2532 return match(U, m_c_Add(m_Specific(Plan.getCanonicalIV()),
2533 m_Specific(&Plan.getVFxUF()))) ||
2534 isa<VPWidenPointerInductionRecipe>(U);
2535 }) &&
2536 "Only users of VFxUF should be VPWidenPointerInductionRecipe and the "
2537 "increment of the canonical induction.");
2538 Plan.getVFxUF().replaceUsesWithIf(&EVL, [](VPUser &U, unsigned Idx) {
2539 // Only replace uses in VPWidenPointerInductionRecipe; The increment of the
2540 // canonical induction must not be updated.
2542 });
2543
2544 // Defer erasing recipes till the end so that we don't invalidate the
2545 // VPTypeAnalysis cache.
2547
2548 // Create a scalar phi to track the previous EVL if fixed-order recurrence is
2549 // contained.
2550 bool ContainsFORs =
2552 if (ContainsFORs) {
2553 // TODO: Use VPInstruction::ExplicitVectorLength to get maximum EVL.
2554 VPValue *MaxEVL = &Plan.getVF();
2555 // Emit VPScalarCastRecipe in preheader if VF is not a 32 bits integer.
2556 VPBuilder Builder(LoopRegion->getPreheaderVPBB());
2557 MaxEVL = Builder.createScalarZExtOrTrunc(
2558 MaxEVL, Type::getInt32Ty(Plan.getContext()),
2559 TypeInfo.inferScalarType(MaxEVL), DebugLoc::getUnknown());
2560
2561 Builder.setInsertPoint(Header, Header->getFirstNonPhi());
2562 VPValue *PrevEVL = Builder.createScalarPhi(
2563 {MaxEVL, &EVL}, DebugLoc::getUnknown(), "prev.evl");
2564
2567 for (VPRecipeBase &R : *VPBB) {
2568 VPValue *V1, *V2;
2569 if (!match(&R,
2571 m_VPValue(V1), m_VPValue(V2))))
2572 continue;
2573 VPValue *Imm = Plan.getOrAddLiveIn(
2576 Intrinsic::experimental_vp_splice,
2577 {V1, V2, Imm, AllOneMask, PrevEVL, &EVL},
2578 TypeInfo.inferScalarType(R.getVPSingleValue()), R.getDebugLoc());
2579 VPSplice->insertBefore(&R);
2580 R.getVPSingleValue()->replaceAllUsesWith(VPSplice);
2581 ToErase.push_back(&R);
2582 }
2583 }
2584 }
2585
2586 VPValue *HeaderMask = findHeaderMask(Plan);
2587 if (!HeaderMask)
2588 return;
2589
2590 // Replace header masks with a mask equivalent to predicating by EVL:
2591 //
2592 // icmp ule widen-canonical-iv backedge-taken-count
2593 // ->
2594 // icmp ult step-vector, EVL
2595 VPRecipeBase *EVLR = EVL.getDefiningRecipe();
2596 VPBuilder Builder(EVLR->getParent(), std::next(EVLR->getIterator()));
2597 Type *EVLType = TypeInfo.inferScalarType(&EVL);
2598 VPValue *EVLMask = Builder.createICmp(
2600 Builder.createNaryOp(VPInstruction::StepVector, {}, EVLType), &EVL);
2601 HeaderMask->replaceAllUsesWith(EVLMask);
2602 ToErase.push_back(HeaderMask->getDefiningRecipe());
2603
2604 // Try to optimize header mask recipes away to their EVL variants.
2605 // TODO: Split optimizeMaskToEVL out and move into
2606 // VPlanTransforms::optimize. transformRecipestoEVLRecipes should be run in
2607 // tryToBuildVPlanWithVPRecipes beforehand.
2608 for (VPUser *U : collectUsersRecursively(EVLMask)) {
2609 auto *CurRecipe = cast<VPRecipeBase>(U);
2610 VPRecipeBase *EVLRecipe =
2611 optimizeMaskToEVL(EVLMask, *CurRecipe, TypeInfo, *AllOneMask, EVL);
2612 if (!EVLRecipe)
2613 continue;
2614
2615 unsigned NumDefVal = EVLRecipe->getNumDefinedValues();
2616 assert(NumDefVal == CurRecipe->getNumDefinedValues() &&
2617 "New recipe must define the same number of values as the "
2618 "original.");
2619 EVLRecipe->insertBefore(CurRecipe);
2621 EVLRecipe)) {
2622 for (unsigned I = 0; I < NumDefVal; ++I) {
2623 VPValue *CurVPV = CurRecipe->getVPValue(I);
2624 CurVPV->replaceAllUsesWith(EVLRecipe->getVPValue(I));
2625 }
2626 }
2627 ToErase.push_back(CurRecipe);
2628 }
2629 // Remove dead EVL mask.
2630 if (EVLMask->getNumUsers() == 0)
2631 ToErase.push_back(EVLMask->getDefiningRecipe());
2632
2633 for (VPRecipeBase *R : reverse(ToErase)) {
2634 SmallVector<VPValue *> PossiblyDead(R->operands());
2635 R->eraseFromParent();
2636 for (VPValue *Op : PossiblyDead)
2638 }
2639}
2640
2641/// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and
2642/// replaces all uses except the canonical IV increment of
2643/// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe
2644/// is used only for loop iterations counting after this transformation.
2645///
2646/// The function uses the following definitions:
2647/// %StartV is the canonical induction start value.
2648///
2649/// The function adds the following recipes:
2650///
2651/// vector.ph:
2652/// ...
2653///
2654/// vector.body:
2655/// ...
2656/// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
2657/// [ %NextEVLIV, %vector.body ]
2658/// %AVL = phi [ trip-count, %vector.ph ], [ %NextAVL, %vector.body ]
2659/// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL
2660/// ...
2661/// %OpEVL = cast i32 %VPEVL to IVSize
2662/// %NextEVLIV = add IVSize %OpEVL, %EVLPhi
2663/// %NextAVL = sub IVSize nuw %AVL, %OpEVL
2664/// ...
2665///
2666/// If MaxSafeElements is provided, the function adds the following recipes:
2667/// vector.ph:
2668/// ...
2669///
2670/// vector.body:
2671/// ...
2672/// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
2673/// [ %NextEVLIV, %vector.body ]
2674/// %AVL = phi [ trip-count, %vector.ph ], [ %NextAVL, %vector.body ]
2675/// %cmp = cmp ult %AVL, MaxSafeElements
2676/// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements
2677/// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL
2678/// ...
2679/// %OpEVL = cast i32 %VPEVL to IVSize
2680/// %NextEVLIV = add IVSize %OpEVL, %EVLPhi
2681/// %NextAVL = sub IVSize nuw %AVL, %OpEVL
2682/// ...
2683///
2685 VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) {
2687
2688 auto *CanonicalIVPHI = Plan.getCanonicalIV();
2689 auto *CanIVTy = CanonicalIVPHI->getScalarType();
2690 VPValue *StartV = CanonicalIVPHI->getStartValue();
2691
2692 // Create the ExplicitVectorLengthPhi recipe in the main loop.
2693 auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc::getUnknown());
2694 EVLPhi->insertAfter(CanonicalIVPHI);
2695 VPBuilder Builder(Header, Header->getFirstNonPhi());
2696 // Create the AVL (application vector length), starting from TC -> 0 in steps
2697 // of EVL.
2698 VPPhi *AVLPhi = Builder.createScalarPhi(
2699 {Plan.getTripCount()}, DebugLoc::getCompilerGenerated(), "avl");
2700 VPValue *AVL = AVLPhi;
2701
2702 if (MaxSafeElements) {
2703 // Support for MaxSafeDist for correct loop emission.
2704 VPValue *AVLSafe =
2705 Plan.getOrAddLiveIn(ConstantInt::get(CanIVTy, *MaxSafeElements));
2706 VPValue *Cmp = Builder.createICmp(ICmpInst::ICMP_ULT, AVL, AVLSafe);
2707 AVL = Builder.createSelect(Cmp, AVL, AVLSafe, DebugLoc::getUnknown(),
2708 "safe_avl");
2709 }
2710 auto *VPEVL = Builder.createNaryOp(VPInstruction::ExplicitVectorLength, AVL,
2712
2713 auto *CanonicalIVIncrement =
2714 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
2715 Builder.setInsertPoint(CanonicalIVIncrement);
2716 VPValue *OpVPEVL = VPEVL;
2717
2718 auto *I32Ty = Type::getInt32Ty(Plan.getContext());
2719 OpVPEVL = Builder.createScalarZExtOrTrunc(
2720 OpVPEVL, CanIVTy, I32Ty, CanonicalIVIncrement->getDebugLoc());
2721
2722 auto *NextEVLIV = Builder.createOverflowingOp(
2723 Instruction::Add, {OpVPEVL, EVLPhi},
2724 {CanonicalIVIncrement->hasNoUnsignedWrap(),
2725 CanonicalIVIncrement->hasNoSignedWrap()},
2726 CanonicalIVIncrement->getDebugLoc(), "index.evl.next");
2727 EVLPhi->addOperand(NextEVLIV);
2728
2729 VPValue *NextAVL = Builder.createOverflowingOp(
2730 Instruction::Sub, {AVLPhi, OpVPEVL}, {/*hasNUW=*/true, /*hasNSW=*/false},
2731 DebugLoc::getCompilerGenerated(), "avl.next");
2732 AVLPhi->addOperand(NextAVL);
2733
2734 transformRecipestoEVLRecipes(Plan, *VPEVL);
2735
2736 // Replace all uses of VPCanonicalIVPHIRecipe by
2737 // VPEVLBasedIVPHIRecipe except for the canonical IV increment.
2738 CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
2739 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
2740 // TODO: support unroll factor > 1.
2741 Plan.setUF(1);
2742}
2743
2745 // Find EVL loop entries by locating VPEVLBasedIVPHIRecipe.
2746 // There should be only one EVL PHI in the entire plan.
2747 VPEVLBasedIVPHIRecipe *EVLPhi = nullptr;
2748
2751 for (VPRecipeBase &R : VPBB->phis())
2752 if (auto *PhiR = dyn_cast<VPEVLBasedIVPHIRecipe>(&R)) {
2753 assert(!EVLPhi && "Found multiple EVL PHIs. Only one expected");
2754 EVLPhi = PhiR;
2755 }
2756
2757 // Early return if no EVL PHI is found.
2758 if (!EVLPhi)
2759 return;
2760
2761 VPBasicBlock *HeaderVPBB = EVLPhi->getParent();
2762 VPValue *EVLIncrement = EVLPhi->getBackedgeValue();
2763 VPValue *AVL;
2764 [[maybe_unused]] bool FoundAVL =
2765 match(EVLIncrement,
2766 m_c_Add(m_ZExtOrSelf(m_EVL(m_VPValue(AVL))), m_Specific(EVLPhi)));
2767 assert(FoundAVL && "Didn't find AVL?");
2768
2769 // The AVL may be capped to a safe distance.
2770 VPValue *SafeAVL;
2771 if (match(AVL, m_Select(m_VPValue(), m_VPValue(SafeAVL), m_VPValue())))
2772 AVL = SafeAVL;
2773
2774 VPValue *AVLNext;
2775 [[maybe_unused]] bool FoundAVLNext =
2777 m_Specific(Plan.getTripCount()), m_VPValue(AVLNext)));
2778 assert(FoundAVLNext && "Didn't find AVL backedge?");
2779
2780 // Convert EVLPhi to concrete recipe.
2781 auto *ScalarR =
2782 VPBuilder(EVLPhi).createScalarPhi({EVLPhi->getStartValue(), EVLIncrement},
2783 EVLPhi->getDebugLoc(), "evl.based.iv");
2784 EVLPhi->replaceAllUsesWith(ScalarR);
2785 EVLPhi->eraseFromParent();
2786
2787 // Replace CanonicalIVInc with EVL-PHI increment.
2788 auto *CanonicalIV = cast<VPPhi>(&*HeaderVPBB->begin());
2789 VPValue *Backedge = CanonicalIV->getIncomingValue(1);
2790 assert(match(Backedge, m_c_Add(m_Specific(CanonicalIV),
2791 m_Specific(&Plan.getVFxUF()))) &&
2792 "Unexpected canonical iv");
2793 Backedge->replaceAllUsesWith(EVLIncrement);
2794
2795 // Remove unused phi and increment.
2796 VPRecipeBase *CanonicalIVIncrement = Backedge->getDefiningRecipe();
2797 CanonicalIVIncrement->eraseFromParent();
2798 CanonicalIV->eraseFromParent();
2799
2800 // Replace the use of VectorTripCount in the latch-exiting block.
2801 // Before: (branch-on-count EVLIVInc, VectorTripCount)
2802 // After: (branch-on-cond eq AVLNext, 0)
2803
2804 VPBasicBlock *LatchExiting =
2805 HeaderVPBB->getPredecessors()[1]->getEntryBasicBlock();
2806 auto *LatchExitingBr = cast<VPInstruction>(LatchExiting->getTerminator());
2807 // Skip single-iteration loop region
2808 if (match(LatchExitingBr, m_BranchOnCond(m_True())))
2809 return;
2810 assert(LatchExitingBr &&
2811 match(LatchExitingBr,
2812 m_BranchOnCount(m_VPValue(EVLIncrement),
2813 m_Specific(&Plan.getVectorTripCount()))) &&
2814 "Unexpected terminator in EVL loop");
2815
2816 Type *AVLTy = VPTypeAnalysis(Plan).inferScalarType(AVLNext);
2817 VPBuilder Builder(LatchExitingBr);
2818 VPValue *Cmp =
2819 Builder.createICmp(CmpInst::ICMP_EQ, AVLNext,
2821 Builder.createNaryOp(VPInstruction::BranchOnCond, Cmp);
2822 LatchExitingBr->eraseFromParent();
2823}
2824
2826 VPlan &Plan, PredicatedScalarEvolution &PSE,
2827 const DenseMap<Value *, const SCEV *> &StridesMap) {
2828 // Replace VPValues for known constant strides guaranteed by predicate scalar
2829 // evolution.
2830 auto CanUseVersionedStride = [&Plan](VPUser &U, unsigned) {
2831 auto *R = cast<VPRecipeBase>(&U);
2832 return R->getParent()->getParent() ||
2833 R->getParent() == Plan.getVectorLoopRegion()->getSinglePredecessor();
2834 };
2835 for (const SCEV *Stride : StridesMap.values()) {
2836 using namespace SCEVPatternMatch;
2837 auto *StrideV = cast<SCEVUnknown>(Stride)->getValue();
2838 const APInt *StrideConst;
2839 if (!match(PSE.getSCEV(StrideV), m_scev_APInt(StrideConst)))
2840 // Only handle constant strides for now.
2841 continue;
2842
2843 auto *CI =
2844 Plan.getOrAddLiveIn(ConstantInt::get(Stride->getType(), *StrideConst));
2845 if (VPValue *StrideVPV = Plan.getLiveIn(StrideV))
2846 StrideVPV->replaceUsesWithIf(CI, CanUseVersionedStride);
2847
2848 // The versioned value may not be used in the loop directly but through a
2849 // sext/zext. Add new live-ins in those cases.
2850 for (Value *U : StrideV->users()) {
2852 continue;
2853 VPValue *StrideVPV = Plan.getLiveIn(U);
2854 if (!StrideVPV)
2855 continue;
2856 unsigned BW = U->getType()->getScalarSizeInBits();
2857 APInt C =
2858 isa<SExtInst>(U) ? StrideConst->sext(BW) : StrideConst->zext(BW);
2859 VPValue *CI = Plan.getOrAddLiveIn(ConstantInt::get(U->getType(), C));
2860 StrideVPV->replaceUsesWithIf(CI, CanUseVersionedStride);
2861 }
2862 }
2863}
2864
2866 VPlan &Plan,
2867 const std::function<bool(BasicBlock *)> &BlockNeedsPredication) {
2868 // Collect recipes in the backward slice of `Root` that may generate a poison
2869 // value that is used after vectorization.
2871 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
2873 Worklist.push_back(Root);
2874
2875 // Traverse the backward slice of Root through its use-def chain.
2876 while (!Worklist.empty()) {
2877 VPRecipeBase *CurRec = Worklist.pop_back_val();
2878
2879 if (!Visited.insert(CurRec).second)
2880 continue;
2881
2882 // Prune search if we find another recipe generating a widen memory
2883 // instruction. Widen memory instructions involved in address computation
2884 // will lead to gather/scatter instructions, which don't need to be
2885 // handled.
2887 VPHeaderPHIRecipe>(CurRec))
2888 continue;
2889
2890 // This recipe contributes to the address computation of a widen
2891 // load/store. If the underlying instruction has poison-generating flags,
2892 // drop them directly.
2893 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) {
2894 VPValue *A, *B;
2895 // Dropping disjoint from an OR may yield incorrect results, as some
2896 // analysis may have converted it to an Add implicitly (e.g. SCEV used
2897 // for dependence analysis). Instead, replace it with an equivalent Add.
2898 // This is possible as all users of the disjoint OR only access lanes
2899 // where the operands are disjoint or poison otherwise.
2900 if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) &&
2901 RecWithFlags->isDisjoint()) {
2902 VPBuilder Builder(RecWithFlags);
2903 VPInstruction *New = Builder.createOverflowingOp(
2904 Instruction::Add, {A, B}, {false, false},
2905 RecWithFlags->getDebugLoc());
2906 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
2907 RecWithFlags->replaceAllUsesWith(New);
2908 RecWithFlags->eraseFromParent();
2909 CurRec = New;
2910 } else
2911 RecWithFlags->dropPoisonGeneratingFlags();
2912 } else {
2915 (void)Instr;
2916 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
2917 "found instruction with poison generating flags not covered by "
2918 "VPRecipeWithIRFlags");
2919 }
2920
2921 // Add new definitions to the worklist.
2922 for (VPValue *Operand : CurRec->operands())
2923 if (VPRecipeBase *OpDef = Operand->getDefiningRecipe())
2924 Worklist.push_back(OpDef);
2925 }
2926 });
2927
2928 // Traverse all the recipes in the VPlan and collect the poison-generating
2929 // recipes in the backward slice starting at the address of a VPWidenRecipe or
2930 // VPInterleaveRecipe.
2931 auto Iter = vp_depth_first_deep(Plan.getEntry());
2933 for (VPRecipeBase &Recipe : *VPBB) {
2934 if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) {
2935 Instruction &UnderlyingInstr = WidenRec->getIngredient();
2936 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
2937 if (AddrDef && WidenRec->isConsecutive() &&
2938 BlockNeedsPredication(UnderlyingInstr.getParent()))
2939 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
2940 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
2941 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
2942 if (AddrDef) {
2943 // Check if any member of the interleave group needs predication.
2944 const InterleaveGroup<Instruction> *InterGroup =
2945 InterleaveRec->getInterleaveGroup();
2946 bool NeedPredication = false;
2947 for (int I = 0, NumMembers = InterGroup->getNumMembers();
2948 I < NumMembers; ++I) {
2949 Instruction *Member = InterGroup->getMember(I);
2950 if (Member)
2951 NeedPredication |= BlockNeedsPredication(Member->getParent());
2952 }
2953
2954 if (NeedPredication)
2955 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
2956 }
2957 }
2958 }
2959 }
2960}
2961
2963 VPlan &Plan,
2965 &InterleaveGroups,
2966 VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed) {
2967 if (InterleaveGroups.empty())
2968 return;
2969
2970 // Interleave memory: for each Interleave Group we marked earlier as relevant
2971 // for this VPlan, replace the Recipes widening its memory instructions with a
2972 // single VPInterleaveRecipe at its insertion point.
2973 VPDominatorTree VPDT;
2974 VPDT.recalculate(Plan);
2975 for (const auto *IG : InterleaveGroups) {
2976 auto *Start =
2977 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getMember(0)));
2978 VPIRMetadata InterleaveMD(*Start);
2979 SmallVector<VPValue *, 4> StoredValues;
2980 if (auto *StoreR = dyn_cast<VPWidenStoreRecipe>(Start))
2981 StoredValues.push_back(StoreR->getStoredValue());
2982 for (unsigned I = 1; I < IG->getFactor(); ++I) {
2983 Instruction *MemberI = IG->getMember(I);
2984 if (!MemberI)
2985 continue;
2986 VPWidenMemoryRecipe *MemoryR =
2987 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(MemberI));
2988 if (auto *StoreR = dyn_cast<VPWidenStoreRecipe>(MemoryR))
2989 StoredValues.push_back(StoreR->getStoredValue());
2990 InterleaveMD.intersect(*MemoryR);
2991 }
2992
2993 bool NeedsMaskForGaps =
2994 (IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed) ||
2995 (!StoredValues.empty() && !IG->isFull());
2996
2997 Instruction *IRInsertPos = IG->getInsertPos();
2998 auto *InsertPos =
2999 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IRInsertPos));
3000
3002 if (auto *Gep = dyn_cast<GetElementPtrInst>(
3003 getLoadStorePointerOperand(IRInsertPos)->stripPointerCasts()))
3004 NW = Gep->getNoWrapFlags().withoutNoUnsignedWrap();
3005
3006 // Get or create the start address for the interleave group.
3007 VPValue *Addr = Start->getAddr();
3008 VPRecipeBase *AddrDef = Addr->getDefiningRecipe();
3009 if (AddrDef && !VPDT.properlyDominates(AddrDef, InsertPos)) {
3010 // We cannot re-use the address of member zero because it does not
3011 // dominate the insert position. Instead, use the address of the insert
3012 // position and create a PtrAdd adjusting it to the address of member
3013 // zero.
3014 // TODO: Hoist Addr's defining recipe (and any operands as needed) to
3015 // InsertPos or sink loads above zero members to join it.
3016 assert(IG->getIndex(IRInsertPos) != 0 &&
3017 "index of insert position shouldn't be zero");
3018 auto &DL = IRInsertPos->getDataLayout();
3019 APInt Offset(32,
3020 DL.getTypeAllocSize(getLoadStoreType(IRInsertPos)) *
3021 IG->getIndex(IRInsertPos),
3022 /*IsSigned=*/true);
3023 VPValue *OffsetVPV =
3024 Plan.getOrAddLiveIn(ConstantInt::get(Plan.getContext(), -Offset));
3025 VPBuilder B(InsertPos);
3026 Addr = B.createNoWrapPtrAdd(InsertPos->getAddr(), OffsetVPV, NW);
3027 }
3028 // If the group is reverse, adjust the index to refer to the last vector
3029 // lane instead of the first. We adjust the index from the first vector
3030 // lane, rather than directly getting the pointer for lane VF - 1, because
3031 // the pointer operand of the interleaved access is supposed to be uniform.
3032 if (IG->isReverse()) {
3033 auto *ReversePtr = new VPVectorEndPointerRecipe(
3034 Addr, &Plan.getVF(), getLoadStoreType(IRInsertPos),
3035 -(int64_t)IG->getFactor(), NW, InsertPos->getDebugLoc());
3036 ReversePtr->insertBefore(InsertPos);
3037 Addr = ReversePtr;
3038 }
3039 auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues,
3040 InsertPos->getMask(), NeedsMaskForGaps,
3041 InterleaveMD, InsertPos->getDebugLoc());
3042 VPIG->insertBefore(InsertPos);
3043
3044 unsigned J = 0;
3045 for (unsigned i = 0; i < IG->getFactor(); ++i)
3046 if (Instruction *Member = IG->getMember(i)) {
3047 VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member);
3048 if (!Member->getType()->isVoidTy()) {
3049 VPValue *OriginalV = MemberR->getVPSingleValue();
3050 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
3051 J++;
3052 }
3053 MemberR->eraseFromParent();
3054 }
3055 }
3056}
3057
3058/// Expand a VPWidenIntOrFpInduction into executable recipes, for the initial
3059/// value, phi and backedge value. In the following example:
3060///
3061/// vector.ph:
3062/// Successor(s): vector loop
3063///
3064/// <x1> vector loop: {
3065/// vector.body:
3066/// WIDEN-INDUCTION %i = phi %start, %step, %vf
3067/// ...
3068/// EMIT branch-on-count ...
3069/// No successors
3070/// }
3071///
3072/// WIDEN-INDUCTION will get expanded to:
3073///
3074/// vector.ph:
3075/// ...
3076/// vp<%induction.start> = ...
3077/// vp<%induction.increment> = ...
3078///
3079/// Successor(s): vector loop
3080///
3081/// <x1> vector loop: {
3082/// vector.body:
3083/// ir<%i> = WIDEN-PHI vp<%induction.start>, vp<%vec.ind.next>
3084/// ...
3085/// vp<%vec.ind.next> = add ir<%i>, vp<%induction.increment>
3086/// EMIT branch-on-count ...
3087/// No successors
3088/// }
3089static void
3091 VPTypeAnalysis &TypeInfo) {
3092 VPlan *Plan = WidenIVR->getParent()->getPlan();
3093 VPValue *Start = WidenIVR->getStartValue();
3094 VPValue *Step = WidenIVR->getStepValue();
3095 VPValue *VF = WidenIVR->getVFValue();
3096 DebugLoc DL = WidenIVR->getDebugLoc();
3097
3098 // The value from the original loop to which we are mapping the new induction
3099 // variable.
3100 Type *Ty = TypeInfo.inferScalarType(WidenIVR);
3101
3102 const InductionDescriptor &ID = WidenIVR->getInductionDescriptor();
3105 // FIXME: The newly created binary instructions should contain nsw/nuw
3106 // flags, which can be found from the original scalar operations.
3107 VPIRFlags Flags;
3108 if (ID.getKind() == InductionDescriptor::IK_IntInduction) {
3109 AddOp = Instruction::Add;
3110 MulOp = Instruction::Mul;
3111 } else {
3112 AddOp = ID.getInductionOpcode();
3113 MulOp = Instruction::FMul;
3114 Flags = ID.getInductionBinOp()->getFastMathFlags();
3115 }
3116
3117 // If the phi is truncated, truncate the start and step values.
3118 VPBuilder Builder(Plan->getVectorPreheader());
3119 Type *StepTy = TypeInfo.inferScalarType(Step);
3120 if (Ty->getScalarSizeInBits() < StepTy->getScalarSizeInBits()) {
3121 assert(StepTy->isIntegerTy() && "Truncation requires an integer type");
3122 Step = Builder.createScalarCast(Instruction::Trunc, Step, Ty, DL);
3123 Start = Builder.createScalarCast(Instruction::Trunc, Start, Ty, DL);
3124 StepTy = Ty;
3125 }
3126
3127 // Construct the initial value of the vector IV in the vector loop preheader.
3128 Type *IVIntTy =
3130 VPValue *Init = Builder.createNaryOp(VPInstruction::StepVector, {}, IVIntTy);
3131 if (StepTy->isFloatingPointTy())
3132 Init = Builder.createWidenCast(Instruction::UIToFP, Init, StepTy);
3133
3134 VPValue *SplatStart = Builder.createNaryOp(VPInstruction::Broadcast, Start);
3135 VPValue *SplatStep = Builder.createNaryOp(VPInstruction::Broadcast, Step);
3136
3137 Init = Builder.createNaryOp(MulOp, {Init, SplatStep}, Flags);
3138 Init = Builder.createNaryOp(AddOp, {SplatStart, Init}, Flags,
3139 DebugLoc::getUnknown(), "induction");
3140
3141 // Create the widened phi of the vector IV.
3142 auto *WidePHI = new VPWidenPHIRecipe(WidenIVR->getPHINode(), nullptr,
3143 WidenIVR->getDebugLoc(), "vec.ind");
3144 WidePHI->addOperand(Init);
3145 WidePHI->insertBefore(WidenIVR);
3146
3147 // Create the backedge value for the vector IV.
3148 VPValue *Inc;
3149 VPValue *Prev;
3150 // If unrolled, use the increment and prev value from the operands.
3151 if (auto *SplatVF = WidenIVR->getSplatVFValue()) {
3152 Inc = SplatVF;
3153 Prev = WidenIVR->getLastUnrolledPartOperand();
3154 } else {
3155 if (VPRecipeBase *R = VF->getDefiningRecipe())
3156 Builder.setInsertPoint(R->getParent(), std::next(R->getIterator()));
3157 // Multiply the vectorization factor by the step using integer or
3158 // floating-point arithmetic as appropriate.
3159 if (StepTy->isFloatingPointTy())
3160 VF = Builder.createScalarCast(Instruction::CastOps::UIToFP, VF, StepTy,
3161 DL);
3162 else
3163 VF = Builder.createScalarZExtOrTrunc(VF, StepTy,
3164 TypeInfo.inferScalarType(VF), DL);
3165
3166 Inc = Builder.createNaryOp(MulOp, {Step, VF}, Flags);
3167 Inc = Builder.createNaryOp(VPInstruction::Broadcast, Inc);
3168 Prev = WidePHI;
3169 }
3170
3172 Builder.setInsertPoint(ExitingBB, ExitingBB->getTerminator()->getIterator());
3173 auto *Next = Builder.createNaryOp(AddOp, {Prev, Inc}, Flags,
3174 WidenIVR->getDebugLoc(), "vec.ind.next");
3175
3176 WidePHI->addOperand(Next);
3177
3178 WidenIVR->replaceAllUsesWith(WidePHI);
3179}
3180
3181/// Expand a VPWidenPointerInductionRecipe into executable recipes, for the
3182/// initial value, phi and backedge value. In the following example:
3183///
3184/// <x1> vector loop: {
3185/// vector.body:
3186/// EMIT ir<%ptr.iv> = WIDEN-POINTER-INDUCTION %start, %step, %vf
3187/// ...
3188/// EMIT branch-on-count ...
3189/// }
3190///
3191/// WIDEN-POINTER-INDUCTION will get expanded to:
3192///
3193/// <x1> vector loop: {
3194/// vector.body:
3195/// EMIT-SCALAR %pointer.phi = phi %start, %ptr.ind
3196/// EMIT %mul = mul %stepvector, %step
3197/// EMIT %vector.gep = wide-ptradd %pointer.phi, %mul
3198/// ...
3199/// EMIT %ptr.ind = ptradd %pointer.phi, %vf
3200/// EMIT branch-on-count ...
3201/// }
3203 VPTypeAnalysis &TypeInfo) {
3204 VPlan *Plan = R->getParent()->getPlan();
3205 VPValue *Start = R->getStartValue();
3206 VPValue *Step = R->getStepValue();
3207 VPValue *VF = R->getVFValue();
3208
3209 assert(R->getInductionDescriptor().getKind() ==
3211 "Not a pointer induction according to InductionDescriptor!");
3212 assert(TypeInfo.inferScalarType(R)->isPointerTy() && "Unexpected type.");
3213 assert(!R->onlyScalarsGenerated(Plan->hasScalableVF()) &&
3214 "Recipe should have been replaced");
3215
3216 VPBuilder Builder(R);
3217 DebugLoc DL = R->getDebugLoc();
3218
3219 // Build a scalar pointer phi.
3220 VPPhi *ScalarPtrPhi = Builder.createScalarPhi(Start, DL, "pointer.phi");
3221
3222 // Create actual address geps that use the pointer phi as base and a
3223 // vectorized version of the step value (<step*0, ..., step*N>) as offset.
3224 Builder.setInsertPoint(R->getParent(), R->getParent()->getFirstNonPhi());
3225 Type *StepTy = TypeInfo.inferScalarType(Step);
3226 VPValue *Offset = Builder.createNaryOp(VPInstruction::StepVector, {}, StepTy);
3227 Offset = Builder.createNaryOp(Instruction::Mul, {Offset, Step});
3228 VPValue *PtrAdd = Builder.createNaryOp(
3229 VPInstruction::WidePtrAdd, {ScalarPtrPhi, Offset}, DL, "vector.gep");
3230 R->replaceAllUsesWith(PtrAdd);
3231
3232 // Create the backedge value for the scalar pointer phi.
3234 Builder.setInsertPoint(ExitingBB, ExitingBB->getTerminator()->getIterator());
3235 VF = Builder.createScalarZExtOrTrunc(VF, StepTy, TypeInfo.inferScalarType(VF),
3236 DL);
3237 VPValue *Inc = Builder.createNaryOp(Instruction::Mul, {Step, VF});
3238
3239 VPValue *InductionGEP =
3240 Builder.createPtrAdd(ScalarPtrPhi, Inc, DL, "ptr.ind");
3241 ScalarPtrPhi->addOperand(InductionGEP);
3242}
3243
3245 // Replace loop regions with explicity CFG.
3246 SmallVector<VPRegionBlock *> LoopRegions;
3248 vp_depth_first_deep(Plan.getEntry()))) {
3249 if (!R->isReplicator())
3250 LoopRegions.push_back(R);
3251 }
3252 for (VPRegionBlock *R : LoopRegions)
3253 R->dissolveToCFGLoop();
3254}
3255
3257 VPTypeAnalysis TypeInfo(Plan);
3260 vp_depth_first_deep(Plan.getEntry()))) {
3261 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
3262 if (auto *WidenIVR = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) {
3263 expandVPWidenIntOrFpInduction(WidenIVR, TypeInfo);
3264 ToRemove.push_back(WidenIVR);
3265 continue;
3266 }
3267
3268 if (auto *WidenIVR = dyn_cast<VPWidenPointerInductionRecipe>(&R)) {
3269 expandVPWidenPointerInduction(WidenIVR, TypeInfo);
3270 ToRemove.push_back(WidenIVR);
3271 continue;
3272 }
3273
3274 // Expand VPBlendRecipe into VPInstruction::Select.
3275 VPBuilder Builder(&R);
3276 if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) {
3277 VPValue *Select = Blend->getIncomingValue(0);
3278 for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I)
3279 Select = Builder.createSelect(Blend->getMask(I),
3280 Blend->getIncomingValue(I), Select,
3281 R.getDebugLoc(), "predphi");
3282 Blend->replaceAllUsesWith(Select);
3283 ToRemove.push_back(Blend);
3284 }
3285
3286 if (auto *Expr = dyn_cast<VPExpressionRecipe>(&R)) {
3287 Expr->decompose();
3288 ToRemove.push_back(Expr);
3289 }
3290
3291 VPValue *VectorStep;
3292 VPValue *ScalarStep;
3294 m_VPValue(VectorStep), m_VPValue(ScalarStep))))
3295 continue;
3296
3297 // Expand WideIVStep.
3298 auto *VPI = cast<VPInstruction>(&R);
3299 Type *IVTy = TypeInfo.inferScalarType(VPI);
3300 if (TypeInfo.inferScalarType(VectorStep) != IVTy) {
3302 ? Instruction::UIToFP
3303 : Instruction::Trunc;
3304 VectorStep = Builder.createWidenCast(CastOp, VectorStep, IVTy);
3305 }
3306
3307 [[maybe_unused]] auto *ConstStep =
3308 ScalarStep->isLiveIn()
3310 : nullptr;
3311 assert(!ConstStep || ConstStep->getValue() != 1);
3312 (void)ConstStep;
3313 if (TypeInfo.inferScalarType(ScalarStep) != IVTy) {
3314 ScalarStep =
3315 Builder.createWidenCast(Instruction::Trunc, ScalarStep, IVTy);
3316 }
3317
3318 VPIRFlags Flags;
3319 if (IVTy->isFloatingPointTy())
3320 Flags = {VPI->getFastMathFlags()};
3321
3322 unsigned MulOpc =
3323 IVTy->isFloatingPointTy() ? Instruction::FMul : Instruction::Mul;
3324 VPInstruction *Mul = Builder.createNaryOp(
3325 MulOpc, {VectorStep, ScalarStep}, Flags, R.getDebugLoc());
3326 VectorStep = Mul;
3327 VPI->replaceAllUsesWith(VectorStep);
3328 ToRemove.push_back(VPI);
3329 }
3330 }
3331
3332 for (VPRecipeBase *R : ToRemove)
3333 R->eraseFromParent();
3334}
3335
3337 VPBasicBlock *EarlyExitVPBB,
3338 VPlan &Plan,
3339 VPBasicBlock *HeaderVPBB,
3340 VPBasicBlock *LatchVPBB) {
3341 VPBlockBase *MiddleVPBB = LatchVPBB->getSuccessors()[0];
3342 if (!EarlyExitVPBB->getSinglePredecessor() &&
3343 EarlyExitVPBB->getPredecessors()[1] == MiddleVPBB) {
3344 assert(EarlyExitVPBB->getNumPredecessors() == 2 &&
3345 EarlyExitVPBB->getPredecessors()[0] == EarlyExitingVPBB &&
3346 "unsupported early exit VPBB");
3347 // Early exit operand should always be last phi operand. If EarlyExitVPBB
3348 // has two predecessors and EarlyExitingVPBB is the first, swap the operands
3349 // of the phis.
3350 for (VPRecipeBase &R : EarlyExitVPBB->phis())
3351 cast<VPIRPhi>(&R)->swapOperands();
3352 }
3353
3354 VPBuilder Builder(LatchVPBB->getTerminator());
3355 VPBlockBase *TrueSucc = EarlyExitingVPBB->getSuccessors()[0];
3356 assert(
3357 match(EarlyExitingVPBB->getTerminator(), m_BranchOnCond(m_VPValue())) &&
3358 "Terminator must be be BranchOnCond");
3359 VPValue *CondOfEarlyExitingVPBB =
3360 EarlyExitingVPBB->getTerminator()->getOperand(0);
3361 auto *CondToEarlyExit = TrueSucc == EarlyExitVPBB
3362 ? CondOfEarlyExitingVPBB
3363 : Builder.createNot(CondOfEarlyExitingVPBB);
3364
3365 // Split the middle block and have it conditionally branch to the early exit
3366 // block if CondToEarlyExit.
3367 VPValue *IsEarlyExitTaken =
3368 Builder.createNaryOp(VPInstruction::AnyOf, {CondToEarlyExit});
3369 VPBasicBlock *NewMiddle = Plan.createVPBasicBlock("middle.split");
3370 VPBasicBlock *VectorEarlyExitVPBB =
3371 Plan.createVPBasicBlock("vector.early.exit");
3372 VPBlockUtils::insertOnEdge(LatchVPBB, MiddleVPBB, NewMiddle);
3373 VPBlockUtils::connectBlocks(NewMiddle, VectorEarlyExitVPBB);
3374 NewMiddle->swapSuccessors();
3375
3376 VPBlockUtils::connectBlocks(VectorEarlyExitVPBB, EarlyExitVPBB);
3377
3378 // Update the exit phis in the early exit block.
3379 VPBuilder MiddleBuilder(NewMiddle);
3380 VPBuilder EarlyExitB(VectorEarlyExitVPBB);
3381 for (VPRecipeBase &R : EarlyExitVPBB->phis()) {
3382 auto *ExitIRI = cast<VPIRPhi>(&R);
3383 // Early exit operand should always be last, i.e., 0 if EarlyExitVPBB has
3384 // a single predecessor and 1 if it has two.
3385 unsigned EarlyExitIdx = ExitIRI->getNumOperands() - 1;
3386 if (ExitIRI->getNumOperands() != 1) {
3387 // The first of two operands corresponds to the latch exit, via MiddleVPBB
3388 // predecessor. Extract its last lane.
3389 ExitIRI->extractLastLaneOfFirstOperand(MiddleBuilder);
3390 }
3391
3392 VPValue *IncomingFromEarlyExit = ExitIRI->getOperand(EarlyExitIdx);
3393 if (!IncomingFromEarlyExit->isLiveIn()) {
3394 // Update the incoming value from the early exit.
3395 VPValue *FirstActiveLane = EarlyExitB.createNaryOp(
3396 VPInstruction::FirstActiveLane, {CondToEarlyExit}, nullptr,
3397 "first.active.lane");
3398 IncomingFromEarlyExit = EarlyExitB.createNaryOp(
3399 VPInstruction::ExtractLane, {FirstActiveLane, IncomingFromEarlyExit},
3400 nullptr, "early.exit.value");
3401 ExitIRI->setOperand(EarlyExitIdx, IncomingFromEarlyExit);
3402 }
3403 }
3404 MiddleBuilder.createNaryOp(VPInstruction::BranchOnCond, {IsEarlyExitTaken});
3405
3406 // Replace the condition controlling the non-early exit from the vector loop
3407 // with one exiting if either the original condition of the vector latch is
3408 // true or the early exit has been taken.
3409 auto *LatchExitingBranch = cast<VPInstruction>(LatchVPBB->getTerminator());
3410 assert(LatchExitingBranch->getOpcode() == VPInstruction::BranchOnCount &&
3411 "Unexpected terminator");
3412 auto *IsLatchExitTaken =
3413 Builder.createICmp(CmpInst::ICMP_EQ, LatchExitingBranch->getOperand(0),
3414 LatchExitingBranch->getOperand(1));
3415 auto *AnyExitTaken = Builder.createNaryOp(
3416 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken});
3417 Builder.createNaryOp(VPInstruction::BranchOnCond, AnyExitTaken);
3418 LatchExitingBranch->eraseFromParent();
3419}
3420
3421/// This function tries convert extended in-loop reductions to
3422/// VPExpressionRecipe and clamp the \p Range if it is beneficial and
3423/// valid. The created recipe must be decomposed to its constituent
3424/// recipes before execution.
3425static VPExpressionRecipe *
3427 VFRange &Range) {
3428 Type *RedTy = Ctx.Types.inferScalarType(Red);
3429 VPValue *VecOp = Red->getVecOp();
3430
3431 // Clamp the range if using extended-reduction is profitable.
3432 auto IsExtendedRedValidAndClampRange = [&](unsigned Opcode, bool isZExt,
3433 Type *SrcTy) -> bool {
3435 [&](ElementCount VF) {
3436 auto *SrcVecTy = cast<VectorType>(toVectorTy(SrcTy, VF));
3438 InstructionCost ExtRedCost = Ctx.TTI.getExtendedReductionCost(
3439 Opcode, isZExt, RedTy, SrcVecTy, Red->getFastMathFlags(),
3440 CostKind);
3441 InstructionCost ExtCost =
3442 cast<VPWidenCastRecipe>(VecOp)->computeCost(VF, Ctx);
3443 InstructionCost RedCost = Red->computeCost(VF, Ctx);
3444 return ExtRedCost.isValid() && ExtRedCost < ExtCost + RedCost;
3445 },
3446 Range);
3447 };
3448
3449 VPValue *A;
3450 // Match reduce(ext)).
3451 if (match(VecOp, m_ZExtOrSExt(m_VPValue(A))) &&
3452 IsExtendedRedValidAndClampRange(
3453 RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind()),
3454 cast<VPWidenCastRecipe>(VecOp)->getOpcode() ==
3455 Instruction::CastOps::ZExt,
3456 Ctx.Types.inferScalarType(A)))
3457 return new VPExpressionRecipe(cast<VPWidenCastRecipe>(VecOp), Red);
3458
3459 return nullptr;
3460}
3461
3462/// This function tries convert extended in-loop reductions to
3463/// VPExpressionRecipe and clamp the \p Range if it is beneficial
3464/// and valid. The created VPExpressionRecipe must be decomposed to its
3465/// constituent recipes before execution. Patterns of the
3466/// VPExpressionRecipe:
3467/// reduce.add(mul(...)),
3468/// reduce.add(mul(ext(A), ext(B))),
3469/// reduce.add(ext(mul(ext(A), ext(B)))).
3470static VPExpressionRecipe *
3472 VPCostContext &Ctx, VFRange &Range) {
3473 unsigned Opcode = RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind());
3474 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3475 return nullptr;
3476
3477 Type *RedTy = Ctx.Types.inferScalarType(Red);
3478
3479 // Clamp the range if using multiply-accumulate-reduction is profitable.
3480 auto IsMulAccValidAndClampRange =
3481 [&](bool isZExt, VPWidenRecipe *Mul, VPWidenCastRecipe *Ext0,
3482 VPWidenCastRecipe *Ext1, VPWidenCastRecipe *OuterExt) -> bool {
3484 [&](ElementCount VF) {
3486 Type *SrcTy =
3487 Ext0 ? Ctx.Types.inferScalarType(Ext0->getOperand(0)) : RedTy;
3488 auto *SrcVecTy = cast<VectorType>(toVectorTy(SrcTy, VF));
3489 InstructionCost MulAccCost = Ctx.TTI.getMulAccReductionCost(
3490 isZExt, Opcode, RedTy, SrcVecTy, CostKind);
3491 InstructionCost MulCost = Mul->computeCost(VF, Ctx);
3492 InstructionCost RedCost = Red->computeCost(VF, Ctx);
3493 InstructionCost ExtCost = 0;
3494 if (Ext0)
3495 ExtCost += Ext0->computeCost(VF, Ctx);
3496 if (Ext1)
3497 ExtCost += Ext1->computeCost(VF, Ctx);
3498 if (OuterExt)
3499 ExtCost += OuterExt->computeCost(VF, Ctx);
3500
3501 return MulAccCost.isValid() &&
3502 MulAccCost < ExtCost + MulCost + RedCost;
3503 },
3504 Range);
3505 };
3506
3507 VPValue *VecOp = Red->getVecOp();
3508 VPValue *A, *B;
3509 // Try to match reduce.add(mul(...)).
3510 if (match(VecOp, m_Mul(m_VPValue(A), m_VPValue(B)))) {
3511 auto *RecipeA =
3512 dyn_cast_if_present<VPWidenCastRecipe>(A->getDefiningRecipe());
3513 auto *RecipeB =
3514 dyn_cast_if_present<VPWidenCastRecipe>(B->getDefiningRecipe());
3515 auto *Mul = cast<VPWidenRecipe>(VecOp->getDefiningRecipe());
3516
3517 // Match reduce.add(mul(ext, ext)).
3518 if (RecipeA && RecipeB &&
3519 (RecipeA->getOpcode() == RecipeB->getOpcode() || A == B) &&
3520 match(RecipeA, m_ZExtOrSExt(m_VPValue())) &&
3521 match(RecipeB, m_ZExtOrSExt(m_VPValue())) &&
3522 IsMulAccValidAndClampRange(RecipeA->getOpcode() ==
3523 Instruction::CastOps::ZExt,
3524 Mul, RecipeA, RecipeB, nullptr)) {
3525 return new VPExpressionRecipe(RecipeA, RecipeB, Mul, Red);
3526 }
3527 // Match reduce.add(mul).
3528 if (IsMulAccValidAndClampRange(true, Mul, nullptr, nullptr, nullptr))
3529 return new VPExpressionRecipe(Mul, Red);
3530 }
3531 // Match reduce.add(ext(mul(ext(A), ext(B)))).
3532 // All extend recipes must have same opcode or A == B
3533 // which can be transform to reduce.add(zext(mul(sext(A), sext(B)))).
3535 m_ZExtOrSExt(m_VPValue()))))) {
3536 auto *Ext = cast<VPWidenCastRecipe>(VecOp->getDefiningRecipe());
3537 auto *Mul = cast<VPWidenRecipe>(Ext->getOperand(0)->getDefiningRecipe());
3538 auto *Ext0 =
3539 cast<VPWidenCastRecipe>(Mul->getOperand(0)->getDefiningRecipe());
3540 auto *Ext1 =
3541 cast<VPWidenCastRecipe>(Mul->getOperand(1)->getDefiningRecipe());
3542 if ((Ext->getOpcode() == Ext0->getOpcode() || Ext0 == Ext1) &&
3543 Ext0->getOpcode() == Ext1->getOpcode() &&
3544 IsMulAccValidAndClampRange(Ext0->getOpcode() ==
3545 Instruction::CastOps::ZExt,
3546 Mul, Ext0, Ext1, Ext)) {
3547 auto *NewExt0 = new VPWidenCastRecipe(
3548 Ext0->getOpcode(), Ext0->getOperand(0), Ext->getResultType(), *Ext0,
3549 Ext0->getDebugLoc());
3550 NewExt0->insertBefore(Ext0);
3551
3552 VPWidenCastRecipe *NewExt1 = NewExt0;
3553 if (Ext0 != Ext1) {
3554 NewExt1 = new VPWidenCastRecipe(Ext1->getOpcode(), Ext1->getOperand(0),
3555 Ext->getResultType(), *Ext1,
3556 Ext1->getDebugLoc());
3557 NewExt1->insertBefore(Ext1);
3558 }
3559 Mul->setOperand(0, NewExt0);
3560 Mul->setOperand(1, NewExt1);
3561 Red->setOperand(1, Mul);
3562 return new VPExpressionRecipe(NewExt0, NewExt1, Mul, Red);
3563 }
3564 }
3565 return nullptr;
3566}
3567
3568/// This function tries to create abstract recipes from the reduction recipe for
3569/// following optimizations and cost estimation.
3571 VPCostContext &Ctx,
3572 VFRange &Range) {
3573 VPExpressionRecipe *AbstractR = nullptr;
3574 auto IP = std::next(Red->getIterator());
3575 auto *VPBB = Red->getParent();
3576 if (auto *MulAcc = tryToMatchAndCreateMulAccumulateReduction(Red, Ctx, Range))
3577 AbstractR = MulAcc;
3578 else if (auto *ExtRed = tryToMatchAndCreateExtendedReduction(Red, Ctx, Range))
3579 AbstractR = ExtRed;
3580 // Cannot create abstract inloop reduction recipes.
3581 if (!AbstractR)
3582 return;
3583
3584 AbstractR->insertBefore(*VPBB, IP);
3585 Red->replaceAllUsesWith(AbstractR);
3586}
3587
3598
3600 if (Plan.hasScalarVFOnly())
3601 return;
3602
3603#ifndef NDEBUG
3604 VPDominatorTree VPDT;
3605 VPDT.recalculate(Plan);
3606#endif
3607
3608 SmallVector<VPValue *> VPValues;
3611 append_range(VPValues, Plan.getLiveIns());
3612 for (VPRecipeBase &R : *Plan.getEntry())
3613 append_range(VPValues, R.definedValues());
3614
3615 auto *VectorPreheader = Plan.getVectorPreheader();
3616 for (VPValue *VPV : VPValues) {
3618 (VPV->isLiveIn() && VPV->getLiveInIRValue() &&
3619 isa<Constant>(VPV->getLiveInIRValue())))
3620 continue;
3621
3622 // Add explicit broadcast at the insert point that dominates all users.
3623 VPBasicBlock *HoistBlock = VectorPreheader;
3624 VPBasicBlock::iterator HoistPoint = VectorPreheader->end();
3625 for (VPUser *User : VPV->users()) {
3626 if (User->usesScalars(VPV))
3627 continue;
3628 if (cast<VPRecipeBase>(User)->getParent() == VectorPreheader)
3629 HoistPoint = HoistBlock->begin();
3630 else
3631 assert(VPDT.dominates(VectorPreheader,
3632 cast<VPRecipeBase>(User)->getParent()) &&
3633 "All users must be in the vector preheader or dominated by it");
3634 }
3635
3636 VPBuilder Builder(cast<VPBasicBlock>(HoistBlock), HoistPoint);
3637 auto *Broadcast = Builder.createNaryOp(VPInstruction::Broadcast, {VPV});
3638 VPV->replaceUsesWithIf(Broadcast,
3639 [VPV, Broadcast](VPUser &U, unsigned Idx) {
3640 return Broadcast != &U && !U.usesScalars(VPV);
3641 });
3642 }
3643}
3644
3646 VPlan &Plan, ElementCount BestVF, unsigned BestUF,
3648 assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
3649 assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
3650
3651 VPValue *TC = Plan.getTripCount();
3652 // Skip cases for which the trip count may be non-trivial to materialize.
3653 // I.e., when a scalar tail is absent - due to tail folding, or when a scalar
3654 // tail is required.
3655 if (!Plan.hasScalarTail() ||
3657 Plan.getScalarPreheader() ||
3658 !TC->isLiveIn())
3659 return;
3660
3661 // Materialize vector trip counts for constants early if it can simply
3662 // be computed as (Original TC / VF * UF) * VF * UF.
3663 // TODO: Compute vector trip counts for loops requiring a scalar epilogue and
3664 // tail-folded loops.
3665 ScalarEvolution &SE = *PSE.getSE();
3666 auto *TCScev = SE.getSCEV(TC->getLiveInIRValue());
3667 if (!isa<SCEVConstant>(TCScev))
3668 return;
3669 const SCEV *VFxUF = SE.getElementCount(TCScev->getType(), BestVF * BestUF);
3670 auto VecTCScev = SE.getMulExpr(SE.getUDivExpr(TCScev, VFxUF), VFxUF);
3671 if (auto *ConstVecTC = dyn_cast<SCEVConstant>(VecTCScev))
3672 Plan.getVectorTripCount().setUnderlyingValue(ConstVecTC->getValue());
3673}
3674
3676 VPBasicBlock *VectorPH) {
3678 if (BTC->getNumUsers() == 0)
3679 return;
3680
3681 VPBuilder Builder(VectorPH, VectorPH->begin());
3682 auto *TCTy = VPTypeAnalysis(Plan).inferScalarType(Plan.getTripCount());
3683 auto *TCMO = Builder.createNaryOp(
3684 Instruction::Sub,
3685 {Plan.getTripCount(), Plan.getOrAddLiveIn(ConstantInt::get(TCTy, 1))},
3686 DebugLoc::getCompilerGenerated(), "trip.count.minus.1");
3687 BTC->replaceAllUsesWith(TCMO);
3688}
3689
3691 if (Plan.hasScalarVFOnly())
3692 return;
3693
3694 VPTypeAnalysis TypeInfo(Plan);
3695 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
3696 auto VPBBsOutsideLoopRegion = VPBlockUtils::blocksOnly<VPBasicBlock>(
3698 auto VPBBsInsideLoopRegion = VPBlockUtils::blocksOnly<VPBasicBlock>(
3699 vp_depth_first_shallow(LoopRegion->getEntry()));
3700 // Materialize Build(Struct)Vector for all replicating VPReplicateRecipes and
3701 // VPInstructions, excluding ones in replicate regions. Those are not
3702 // materialized explicitly yet. Those vector users are still handled in
3703 // VPReplicateRegion::execute(), via shouldPack().
3704 // TODO: materialize build vectors for replicating recipes in replicating
3705 // regions.
3706 for (VPBasicBlock *VPBB :
3707 concat<VPBasicBlock *>(VPBBsOutsideLoopRegion, VPBBsInsideLoopRegion)) {
3708 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
3710 continue;
3711 auto *DefR = cast<VPRecipeWithIRFlags>(&R);
3712 auto UsesVectorOrInsideReplicateRegion = [DefR, LoopRegion](VPUser *U) {
3713 VPRegionBlock *ParentRegion =
3715 return !U->usesScalars(DefR) || ParentRegion != LoopRegion;
3716 };
3717 if ((isa<VPReplicateRecipe>(DefR) &&
3718 cast<VPReplicateRecipe>(DefR)->isSingleScalar()) ||
3719 (isa<VPInstruction>(DefR) &&
3721 !cast<VPInstruction>(DefR)->doesGeneratePerAllLanes())) ||
3722 none_of(DefR->users(), UsesVectorOrInsideReplicateRegion))
3723 continue;
3724
3725 Type *ScalarTy = TypeInfo.inferScalarType(DefR);
3726 unsigned Opcode = ScalarTy->isStructTy()
3729 auto *BuildVector = new VPInstruction(Opcode, {DefR});
3730 BuildVector->insertAfter(DefR);
3731
3732 DefR->replaceUsesWithIf(
3733 BuildVector, [BuildVector, &UsesVectorOrInsideReplicateRegion](
3734 VPUser &U, unsigned) {
3735 return &U != BuildVector && UsesVectorOrInsideReplicateRegion(&U);
3736 });
3737 }
3738 }
3739}
3740
3742 VPBasicBlock *VectorPHVPBB,
3743 bool TailByMasking,
3744 bool RequiresScalarEpilogue) {
3745 VPValue &VectorTC = Plan.getVectorTripCount();
3746 assert(VectorTC.isLiveIn() && "vector-trip-count must be a live-in");
3747 // There's nothing to do if there are no users of the vector trip count or its
3748 // IR value has already been set.
3749 if (VectorTC.getNumUsers() == 0 || VectorTC.getLiveInIRValue())
3750 return;
3751
3752 VPValue *TC = Plan.getTripCount();
3753 Type *TCTy = VPTypeAnalysis(Plan).inferScalarType(TC);
3754 VPBuilder Builder(VectorPHVPBB, VectorPHVPBB->begin());
3755 VPValue *Step = &Plan.getVFxUF();
3756
3757 // If the tail is to be folded by masking, round the number of iterations N
3758 // up to a multiple of Step instead of rounding down. This is done by first
3759 // adding Step-1 and then rounding down. Note that it's ok if this addition
3760 // overflows: the vector induction variable will eventually wrap to zero given
3761 // that it starts at zero and its Step is a power of two; the loop will then
3762 // exit, with the last early-exit vector comparison also producing all-true.
3763 // For scalable vectors the VF is not guaranteed to be a power of 2, but this
3764 // is accounted for in emitIterationCountCheck that adds an overflow check.
3765 if (TailByMasking) {
3766 TC = Builder.createNaryOp(
3767 Instruction::Add,
3768 {TC, Builder.createNaryOp(
3769 Instruction::Sub,
3770 {Step, Plan.getOrAddLiveIn(ConstantInt::get(TCTy, 1))})},
3771 DebugLoc::getCompilerGenerated(), "n.rnd.up");
3772 }
3773
3774 // Now we need to generate the expression for the part of the loop that the
3775 // vectorized body will execute. This is equal to N - (N % Step) if scalar
3776 // iterations are not required for correctness, or N - Step, otherwise. Step
3777 // is equal to the vectorization factor (number of SIMD elements) times the
3778 // unroll factor (number of SIMD instructions).
3779 VPValue *R =
3780 Builder.createNaryOp(Instruction::URem, {TC, Step},
3781 DebugLoc::getCompilerGenerated(), "n.mod.vf");
3782
3783 // There are cases where we *must* run at least one iteration in the remainder
3784 // loop. See the cost model for when this can happen. If the step evenly
3785 // divides the trip count, we set the remainder to be equal to the step. If
3786 // the step does not evenly divide the trip count, no adjustment is necessary
3787 // since there will already be scalar iterations. Note that the minimum
3788 // iterations check ensures that N >= Step.
3789 if (RequiresScalarEpilogue) {
3790 assert(!TailByMasking &&
3791 "requiring scalar epilogue is not supported with fail folding");
3792 VPValue *IsZero = Builder.createICmp(
3793 CmpInst::ICMP_EQ, R, Plan.getOrAddLiveIn(ConstantInt::get(TCTy, 0)));
3794 R = Builder.createSelect(IsZero, Step, R);
3795 }
3796
3797 VPValue *Res = Builder.createNaryOp(
3798 Instruction::Sub, {TC, R}, DebugLoc::getCompilerGenerated(), "n.vec");
3799 VectorTC.replaceAllUsesWith(Res);
3800}
3801
3803 ElementCount VFEC) {
3804 VPBuilder Builder(VectorPH, VectorPH->begin());
3805 Type *TCTy = VPTypeAnalysis(Plan).inferScalarType(Plan.getTripCount());
3806 VPValue &VF = Plan.getVF();
3807 VPValue &VFxUF = Plan.getVFxUF();
3808 // Note that after the transform, Plan.getVF and Plan.getVFxUF should not be
3809 // used.
3810 // TODO: Assert that they aren't used.
3811
3812 // If there are no users of the runtime VF, compute VFxUF by constant folding
3813 // the multiplication of VF and UF.
3814 if (VF.getNumUsers() == 0) {
3815 VPValue *RuntimeVFxUF =
3816 Builder.createElementCount(TCTy, VFEC * Plan.getUF());
3817 VFxUF.replaceAllUsesWith(RuntimeVFxUF);
3818 return;
3819 }
3820
3821 // For users of the runtime VF, compute it as VF * vscale, and VFxUF as (VF *
3822 // vscale) * UF.
3823 VPValue *RuntimeVF = Builder.createElementCount(TCTy, VFEC);
3825 VPValue *BC = Builder.createNaryOp(VPInstruction::Broadcast, RuntimeVF);
3827 BC, [&VF](VPUser &U, unsigned) { return !U.usesScalars(&VF); });
3828 }
3829 VF.replaceAllUsesWith(RuntimeVF);
3830
3831 VPValue *UF = Plan.getOrAddLiveIn(ConstantInt::get(TCTy, Plan.getUF()));
3832 VPValue *MulByUF = Builder.createNaryOp(Instruction::Mul, {RuntimeVF, UF});
3833 VFxUF.replaceAllUsesWith(MulByUF);
3834}
3835
3838 const DataLayout &DL = SE.getDataLayout();
3839 SCEVExpander Expander(SE, DL, "induction", /*PreserveLCSSA=*/true);
3840
3841 auto *Entry = cast<VPIRBasicBlock>(Plan.getEntry());
3842 BasicBlock *EntryBB = Entry->getIRBasicBlock();
3843 DenseMap<const SCEV *, Value *> ExpandedSCEVs;
3844 for (VPRecipeBase &R : make_early_inc_range(*Entry)) {
3846 continue;
3847 auto *ExpSCEV = dyn_cast<VPExpandSCEVRecipe>(&R);
3848 if (!ExpSCEV)
3849 break;
3850 const SCEV *Expr = ExpSCEV->getSCEV();
3851 Value *Res =
3852 Expander.expandCodeFor(Expr, Expr->getType(), EntryBB->getTerminator());
3853 ExpandedSCEVs[ExpSCEV->getSCEV()] = Res;
3854 VPValue *Exp = Plan.getOrAddLiveIn(Res);
3855 ExpSCEV->replaceAllUsesWith(Exp);
3856 if (Plan.getTripCount() == ExpSCEV)
3857 Plan.resetTripCount(Exp);
3858 ExpSCEV->eraseFromParent();
3859 }
3861 "VPExpandSCEVRecipes must be at the beginning of the entry block, "
3862 "after any VPIRInstructions");
3863 // Add IR instructions in the entry basic block but not in the VPIRBasicBlock
3864 // to the VPIRBasicBlock.
3865 auto EI = Entry->begin();
3866 for (Instruction &I : drop_end(*EntryBB)) {
3867 if (EI != Entry->end() && isa<VPIRInstruction>(*EI) &&
3868 &cast<VPIRInstruction>(&*EI)->getInstruction() == &I) {
3869 EI++;
3870 continue;
3871 }
3873 }
3874
3875 return ExpandedSCEVs;
3876}
3877
3878/// Returns true if \p V is VPWidenLoadRecipe or VPInterleaveRecipe that can be
3879/// converted to a narrower recipe. \p V is used by a wide recipe that feeds a
3880/// store interleave group at index \p Idx, \p WideMember0 is the recipe feeding
3881/// the same interleave group at index 0. A VPWidenLoadRecipe can be narrowed to
3882/// an index-independent load if it feeds all wide ops at all indices (\p OpV
3883/// must be the operand at index \p OpIdx for both the recipe at lane 0, \p
3884/// WideMember0). A VPInterleaveRecipe can be narrowed to a wide load, if \p V
3885/// is defined at \p Idx of a load interleave group.
3886static bool canNarrowLoad(VPWidenRecipe *WideMember0, unsigned OpIdx,
3887 VPValue *OpV, unsigned Idx) {
3888 auto *DefR = OpV->getDefiningRecipe();
3889 if (!DefR)
3890 return WideMember0->getOperand(OpIdx) == OpV;
3891 if (auto *W = dyn_cast<VPWidenLoadRecipe>(DefR))
3892 return !W->getMask() && WideMember0->getOperand(OpIdx) == OpV;
3893
3894 if (auto *IR = dyn_cast<VPInterleaveRecipe>(DefR))
3895 return IR->getInterleaveGroup()->isFull() && IR->getVPValue(Idx) == OpV;
3896 return false;
3897}
3898
3899/// Returns true if \p IR is a full interleave group with factor and number of
3900/// members both equal to \p VF. The interleave group must also access the full
3901/// vector width \p VectorRegWidth.
3903 unsigned VF, VPTypeAnalysis &TypeInfo,
3904 unsigned VectorRegWidth) {
3905 if (!InterleaveR)
3906 return false;
3907
3908 Type *GroupElementTy = nullptr;
3909 if (InterleaveR->getStoredValues().empty()) {
3910 GroupElementTy = TypeInfo.inferScalarType(InterleaveR->getVPValue(0));
3911 if (!all_of(InterleaveR->definedValues(),
3912 [&TypeInfo, GroupElementTy](VPValue *Op) {
3913 return TypeInfo.inferScalarType(Op) == GroupElementTy;
3914 }))
3915 return false;
3916 } else {
3917 GroupElementTy =
3918 TypeInfo.inferScalarType(InterleaveR->getStoredValues()[0]);
3919 if (!all_of(InterleaveR->getStoredValues(),
3920 [&TypeInfo, GroupElementTy](VPValue *Op) {
3921 return TypeInfo.inferScalarType(Op) == GroupElementTy;
3922 }))
3923 return false;
3924 }
3925
3926 unsigned GroupSize = GroupElementTy->getScalarSizeInBits() * VF;
3927 auto IG = InterleaveR->getInterleaveGroup();
3928 return IG->getFactor() == VF && IG->getNumMembers() == VF &&
3929 GroupSize == VectorRegWidth;
3930}
3931
3932/// Returns true if \p VPValue is a narrow VPValue.
3933static bool isAlreadyNarrow(VPValue *VPV) {
3934 if (VPV->isLiveIn())
3935 return true;
3936 auto *RepR = dyn_cast<VPReplicateRecipe>(VPV);
3937 return RepR && RepR->isSingleScalar();
3938}
3939
3941 unsigned VectorRegWidth) {
3942 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion();
3943 if (!VectorLoop)
3944 return;
3945
3946 VPTypeAnalysis TypeInfo(Plan);
3947
3948 unsigned VFMinVal = VF.getKnownMinValue();
3950 for (auto &R : *VectorLoop->getEntryBasicBlock()) {
3953 continue;
3954
3957 continue;
3958
3959 // Bail out on recipes not supported at the moment:
3960 // * phi recipes other than the canonical induction
3961 // * recipes writing to memory except interleave groups
3962 // Only support plans with a canonical induction phi.
3963 if (R.isPhi())
3964 return;
3965
3966 auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R);
3967 if (R.mayWriteToMemory() && !InterleaveR)
3968 return;
3969
3970 // Do not narrow interleave groups if there are VectorPointer recipes and
3971 // the plan was unrolled. The recipe implicitly uses VF from
3972 // VPTransformState.
3973 // TODO: Remove restriction once the VF for the VectorPointer offset is
3974 // modeled explicitly as operand.
3975 if (isa<VPVectorPointerRecipe>(&R) && Plan.getUF() > 1)
3976 return;
3977
3978 // All other ops are allowed, but we reject uses that cannot be converted
3979 // when checking all allowed consumers (store interleave groups) below.
3980 if (!InterleaveR)
3981 continue;
3982
3983 // Bail out on non-consecutive interleave groups.
3984 if (!isConsecutiveInterleaveGroup(InterleaveR, VFMinVal, TypeInfo,
3985 VectorRegWidth))
3986 return;
3987
3988 // Skip read interleave groups.
3989 if (InterleaveR->getStoredValues().empty())
3990 continue;
3991
3992 // Narrow interleave groups, if all operands are already matching narrow
3993 // ops.
3994 auto *Member0 = InterleaveR->getStoredValues()[0];
3995 if (isAlreadyNarrow(Member0) &&
3996 all_of(InterleaveR->getStoredValues(),
3997 [Member0](VPValue *VPV) { return Member0 == VPV; })) {
3998 StoreGroups.push_back(InterleaveR);
3999 continue;
4000 }
4001
4002 // For now, we only support full interleave groups storing load interleave
4003 // groups.
4004 if (all_of(enumerate(InterleaveR->getStoredValues()), [](auto Op) {
4005 VPRecipeBase *DefR = Op.value()->getDefiningRecipe();
4006 if (!DefR)
4007 return false;
4008 auto *IR = dyn_cast<VPInterleaveRecipe>(DefR);
4009 return IR && IR->getInterleaveGroup()->isFull() &&
4010 IR->getVPValue(Op.index()) == Op.value();
4011 })) {
4012 StoreGroups.push_back(InterleaveR);
4013 continue;
4014 }
4015
4016 // Check if all values feeding InterleaveR are matching wide recipes, which
4017 // operands that can be narrowed.
4018 auto *WideMember0 = dyn_cast_or_null<VPWidenRecipe>(
4019 InterleaveR->getStoredValues()[0]->getDefiningRecipe());
4020 if (!WideMember0)
4021 return;
4022 for (const auto &[I, V] : enumerate(InterleaveR->getStoredValues())) {
4023 auto *R = dyn_cast_or_null<VPWidenRecipe>(V->getDefiningRecipe());
4024 if (!R || R->getOpcode() != WideMember0->getOpcode() ||
4025 R->getNumOperands() > 2)
4026 return;
4027 if (any_of(enumerate(R->operands()),
4028 [WideMember0, Idx = I](const auto &P) {
4029 const auto &[OpIdx, OpV] = P;
4030 return !canNarrowLoad(WideMember0, OpIdx, OpV, Idx);
4031 }))
4032 return;
4033 }
4034 StoreGroups.push_back(InterleaveR);
4035 }
4036
4037 if (StoreGroups.empty())
4038 return;
4039
4040 // Convert InterleaveGroup \p R to a single VPWidenLoadRecipe.
4041 SmallPtrSet<VPValue *, 4> NarrowedOps;
4042 auto NarrowOp = [&NarrowedOps](VPValue *V) -> VPValue * {
4043 auto *R = V->getDefiningRecipe();
4044 if (!R || NarrowedOps.contains(V))
4045 return V;
4046 if (auto *LoadGroup = dyn_cast<VPInterleaveRecipe>(R)) {
4047 // Narrow interleave group to wide load, as transformed VPlan will only
4048 // process one original iteration.
4049 auto *L = new VPWidenLoadRecipe(
4050 *cast<LoadInst>(LoadGroup->getInterleaveGroup()->getInsertPos()),
4051 LoadGroup->getAddr(), LoadGroup->getMask(), /*Consecutive=*/true,
4052 /*Reverse=*/false, {}, LoadGroup->getDebugLoc());
4053 L->insertBefore(LoadGroup);
4054 NarrowedOps.insert(L);
4055 return L;
4056 }
4057
4058 if (auto *RepR = dyn_cast<VPReplicateRecipe>(R)) {
4059 assert(RepR->isSingleScalar() &&
4060 isa<LoadInst>(RepR->getUnderlyingInstr()) &&
4061 "must be a single scalar load");
4062 NarrowedOps.insert(RepR);
4063 return RepR;
4064 }
4065 auto *WideLoad = cast<VPWidenLoadRecipe>(R);
4066
4067 VPValue *PtrOp = WideLoad->getAddr();
4068 if (auto *VecPtr = dyn_cast<VPVectorPointerRecipe>(PtrOp))
4069 PtrOp = VecPtr->getOperand(0);
4070 // Narrow wide load to uniform scalar load, as transformed VPlan will only
4071 // process one original iteration.
4072 auto *N = new VPReplicateRecipe(&WideLoad->getIngredient(), {PtrOp},
4073 /*IsUniform*/ true,
4074 /*Mask*/ nullptr, *WideLoad);
4075 N->insertBefore(WideLoad);
4076 NarrowedOps.insert(N);
4077 return N;
4078 };
4079
4080 // Narrow operation tree rooted at store groups.
4081 for (auto *StoreGroup : StoreGroups) {
4082 VPValue *Res = nullptr;
4083 VPValue *Member0 = StoreGroup->getStoredValues()[0];
4084 if (isAlreadyNarrow(Member0)) {
4085 Res = Member0;
4086 } else if (auto *WideMember0 =
4088 for (unsigned Idx = 0, E = WideMember0->getNumOperands(); Idx != E; ++Idx)
4089 WideMember0->setOperand(Idx, NarrowOp(WideMember0->getOperand(Idx)));
4090 Res = WideMember0;
4091 } else {
4092 Res = NarrowOp(Member0);
4093 }
4094
4095 auto *S = new VPWidenStoreRecipe(
4096 *cast<StoreInst>(StoreGroup->getInterleaveGroup()->getInsertPos()),
4097 StoreGroup->getAddr(), Res, nullptr, /*Consecutive=*/true,
4098 /*Reverse=*/false, {}, StoreGroup->getDebugLoc());
4099 S->insertBefore(StoreGroup);
4100 StoreGroup->eraseFromParent();
4101 }
4102
4103 // Adjust induction to reflect that the transformed plan only processes one
4104 // original iteration.
4105 auto *CanIV = Plan.getCanonicalIV();
4106 auto *Inc = cast<VPInstruction>(CanIV->getBackedgeValue());
4107 VPBuilder PHBuilder(Plan.getVectorPreheader());
4108
4109 VPValue *UF = Plan.getOrAddLiveIn(
4110 ConstantInt::get(CanIV->getScalarType(), 1 * Plan.getUF()));
4111 if (VF.isScalable()) {
4112 VPValue *VScale = PHBuilder.createElementCount(
4113 CanIV->getScalarType(), ElementCount::getScalable(1));
4114 VPValue *VScaleUF = PHBuilder.createNaryOp(Instruction::Mul, {VScale, UF});
4115 Inc->setOperand(1, VScaleUF);
4116 Plan.getVF().replaceAllUsesWith(VScale);
4117 } else {
4118 Inc->setOperand(1, UF);
4120 Plan.getOrAddLiveIn(ConstantInt::get(CanIV->getScalarType(), 1)));
4121 }
4122 removeDeadRecipes(Plan);
4123}
4124
4125/// Add branch weight metadata, if the \p Plan's middle block is terminated by a
4126/// BranchOnCond recipe.
4128 VPlan &Plan, ElementCount VF, std::optional<unsigned> VScaleForTuning) {
4129 VPBasicBlock *MiddleVPBB = Plan.getMiddleBlock();
4130 auto *MiddleTerm =
4132 // Only add branch metadata if there is a (conditional) terminator.
4133 if (!MiddleTerm)
4134 return;
4135
4136 assert(MiddleTerm->getOpcode() == VPInstruction::BranchOnCond &&
4137 "must have a BranchOnCond");
4138 // Assume that `TripCount % VectorStep ` is equally distributed.
4139 unsigned VectorStep = Plan.getUF() * VF.getKnownMinValue();
4140 if (VF.isScalable() && VScaleForTuning.has_value())
4141 VectorStep *= *VScaleForTuning;
4142 assert(VectorStep > 0 && "trip count should not be zero");
4143 MDBuilder MDB(Plan.getContext());
4144 MDNode *BranchWeights =
4145 MDB.createBranchWeights({1, VectorStep - 1}, /*IsExpected=*/false);
4146 MiddleTerm->addMetadata(LLVMContext::MD_prof, BranchWeights);
4147}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static bool isSentinel(const DWARFDebugNames::AttributeEncoding &AE)
@ Default
Hexagon Common GEP
iv Induction Variable Users
Definition IVUsers.cpp:48
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
licm
Definition LICM.cpp:381
Legalize the Machine IR a function s Machine IR
Definition Legalizer.cpp:80
static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution &SE)
#define I(x, y, z)
Definition MD5.cpp:58
mir Rename Register Operands
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file implements a set that has insertion order iteration characteristics.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
static VPValue * optimizeLatchExitInductionUser(VPlan &Plan, VPTypeAnalysis &TypeInfo, VPBlockBase *PredVPBB, VPValue *Op, DenseMap< VPValue *, VPValue * > &EndValues, ScalarEvolution &SE)
Attempts to optimize the induction variable exit values for users in the exit block coming from the l...
static void removeCommonBlendMask(VPBlendRecipe *Blend)
Try to see if all of Blend's masks share a common value logically and'ed and remove it from the masks...
static void tryToCreateAbstractReductionRecipe(VPReductionRecipe *Red, VPCostContext &Ctx, VFRange &Range)
This function tries to create abstract recipes from the reduction recipe for following optimizations ...
static bool sinkScalarOperands(VPlan &Plan)
static bool simplifyBranchConditionForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Try to simplify the branch condition of Plan.
static Value * tryToFoldLiveIns(const VPRecipeBase &R, unsigned Opcode, ArrayRef< VPValue * > Operands, const DataLayout &DL, VPTypeAnalysis &TypeInfo)
Try to fold R using InstSimplifyFolder.
static void removeRedundantInductionCasts(VPlan &Plan)
Remove redundant casts of inductions.
static bool tryToReplaceALMWithWideALM(VPlan &Plan, ElementCount VF, unsigned UF)
Try to replace multiple active lane masks used for control flow with a single, wide active lane mask ...
static VPExpressionRecipe * tryToMatchAndCreateExtendedReduction(VPReductionRecipe *Red, VPCostContext &Ctx, VFRange &Range)
This function tries convert extended in-loop reductions to VPExpressionRecipe and clamp the Range if ...
static VPScalarIVStepsRecipe * createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind, Instruction::BinaryOps InductionOpcode, FPMathOperator *FPBinOp, Instruction *TruncI, VPValue *StartV, VPValue *Step, DebugLoc DL, VPBuilder &Builder)
static bool sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR, VPRecipeBase *Previous, VPDominatorTree &VPDT)
Sink users of FOR after the recipe defining the previous value Previous of the recurrence.
static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan)
static VPActiveLaneMaskPHIRecipe * addVPLaneMaskPhiAndUpdateExitBranch(VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck)
static void expandVPWidenPointerInduction(VPWidenPointerInductionRecipe *R, VPTypeAnalysis &TypeInfo)
Expand a VPWidenPointerInductionRecipe into executable recipes, for the initial value,...
static void transformRecipestoEVLRecipes(VPlan &Plan, VPValue &EVL)
Replace recipes with their EVL variants.
static bool isDeadRecipe(VPRecipeBase &R)
Returns true if R is dead and can be removed.
static void legalizeAndOptimizeInductions(VPlan &Plan)
Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd (IndStart, ScalarIVSteps (0,...
static void addReplicateRegions(VPlan &Plan)
static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo)
Try to simplify recipe R.
static void removeRedundantExpandSCEVRecipes(VPlan &Plan)
Remove redundant EpxandSCEVRecipes in Plan's entry block by replacing them with already existing reci...
static bool isConditionTrueViaVFAndUF(VPValue *Cond, VPlan &Plan, ElementCount BestVF, unsigned BestUF, ScalarEvolution &SE)
Return true if Cond is known to be true for given BestVF and BestUF.
static bool isConsecutiveInterleaveGroup(VPInterleaveRecipe *InterleaveR, unsigned VF, VPTypeAnalysis &TypeInfo, unsigned VectorRegWidth)
Returns true if IR is a full interleave group with factor and number of members both equal to VF.
static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR, VPRecipeBase *Previous, VPDominatorTree &VPDT)
Try to hoist Previous and its operands before all users of FOR.
static SmallVector< VPUser * > collectUsersRecursively(VPValue *V)
static void recursivelyDeleteDeadRecipes(VPValue *V)
static VPValue * optimizeEarlyExitInductionUser(VPlan &Plan, VPTypeAnalysis &TypeInfo, VPBlockBase *PredVPBB, VPValue *Op, ScalarEvolution &SE)
Attempts to optimize the induction variable exit values for users in the early exit block.
cl::opt< bool > EnableWideActiveLaneMask("enable-wide-lane-mask", cl::init(false), cl::Hidden, cl::desc("Enable use of wide get active lane mask instructions"))
static VPWidenInductionRecipe * getOptimizableIVOf(VPValue *VPV, ScalarEvolution &SE)
Check if VPV is an untruncated wide induction, either before or after the increment.
static VPRegionBlock * createReplicateRegion(VPReplicateRecipe *PredRecipe, VPlan &Plan)
static VPBasicBlock * getPredicatedThenBlock(VPRegionBlock *R)
If R is a triangle region, return the 'then' block of the triangle.
static void simplifyBlends(VPlan &Plan)
Normalize and simplify VPBlendRecipes.
static bool isAlreadyNarrow(VPValue *VPV)
Returns true if VPValue is a narrow VPValue.
static bool optimizeVectorInductionWidthForTCAndVFUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF)
Optimize the width of vector induction variables in Plan based on a known constant Trip Count,...
VPValue * getPredicatedMask(VPRegionBlock *R)
If R is a region with a VPBranchOnMaskRecipe in the entry block, return the mask.
static VPExpressionRecipe * tryToMatchAndCreateMulAccumulateReduction(VPReductionRecipe *Red, VPCostContext &Ctx, VFRange &Range)
This function tries convert extended in-loop reductions to VPExpressionRecipe and clamp the Range if ...
static void expandVPWidenIntOrFpInduction(VPWidenIntOrFpInductionRecipe *WidenIVR, VPTypeAnalysis &TypeInfo)
Expand a VPWidenIntOrFpInduction into executable recipes, for the initial value, phi and backedge val...
static VPSingleDefRecipe * findHeaderMask(VPlan &Plan)
Collect the header mask with the pattern: (ICMP_ULE, WideCanonicalIV, backedge-taken-count) TODO: Int...
static VPRecipeBase * optimizeMaskToEVL(VPValue *HeaderMask, VPRecipeBase &CurRecipe, VPTypeAnalysis &TypeInfo, VPValue &AllOneMask, VPValue &EVL)
Try to optimize a CurRecipe masked by HeaderMask to a corresponding EVL-based recipe without the head...
static void removeRedundantCanonicalIVs(VPlan &Plan)
Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV recipe, if it exists.
static bool canNarrowLoad(VPWidenRecipe *WideMember0, unsigned OpIdx, VPValue *OpV, unsigned Idx)
Returns true if V is VPWidenLoadRecipe or VPInterleaveRecipe that can be converted to a narrower reci...
static void narrowToSingleScalarRecipes(VPlan &Plan)
This file provides utility VPlan to VPlan transformations.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
Value * RHS
Value * LHS
BinaryOperator * Mul
static const uint32_t IV[8]
Definition blake3_impl.h:83
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
LLVM Basic Block Representation.
Definition BasicBlock.h:62
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
This class represents a function call, abstracting a target machine's calling convention.
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:791
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
A debug info location.
Definition DebugLoc.h:124
static DebugLoc getCompilerGenerated()
Definition DebugLoc.h:163
static DebugLoc getUnknown()
Definition DebugLoc.h:162
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:187
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:229
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition Operator.h:200
Represents flags for the getelementptr instruction/expression.
GEPNoWrapFlags withoutNoUnsignedWrap() const
static GEPNoWrapFlags none()
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
A struct for saving information about induction variables.
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
bool isCast() const
bool isBinaryOp() const
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
The group of interleaved loads/stores sharing the same stride and close to each other.
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
uint32_t getNumMembers() const
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition VPlan.cpp:1564
LLVM_ABI MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
Definition MDBuilder.cpp:38
Metadata node.
Definition Metadata.h:1077
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
ValueT lookup(const KeyT &Key) const
Definition MapVector.h:99
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
RegionT * getParent() const
Get the parent of the Region.
Definition RegionInfo.h:362
This class uses information about analyze scalars to rewrite expressions in canonical form.
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:59
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:104
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:168
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
iterator begin() const
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Provides information about what library functions are available for the current target.
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:87
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:96
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:298
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
op_range operands()
Definition User.h:292
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
Definition VPlan.h:3464
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3751
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition VPlan.h:3826
RecipeListTy::iterator iterator
Instruction iterators...
Definition VPlan.h:3778
iterator end()
Definition VPlan.h:3788
iterator begin()
Recipe iterator methods.
Definition VPlan.h:3786
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:3839
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition VPlan.cpp:246
VPRegionBlock * getEnclosingLoopRegion()
Definition VPlan.cpp:619
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
Definition VPlan.cpp:591
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition VPlan.cpp:664
const VPRecipeBase & back() const
Definition VPlan.h:3800
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
Definition VPlan.h:2390
VPValue * getMask(unsigned Idx) const
Return mask number Idx.
Definition VPlan.h:2424
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
Definition VPlan.h:2414
void setMask(unsigned Idx, VPValue *V)
Set mask number Idx to V.
Definition VPlan.h:2430
bool isNormalized() const
A normalized blend is one that has an odd number of operands, whereby the first operand does not have...
Definition VPlan.h:2410
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
VPRegionBlock * getParent()
Definition VPlan.h:173
const VPBasicBlock * getExitingBasicBlock() const
Definition VPlan.cpp:190
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition VPlan.h:322
size_t getNumPredecessors() const
Definition VPlan.h:220
const VPBlocksTy & getPredecessors() const
Definition VPlan.h:204
VPlan * getPlan()
Definition VPlan.cpp:165
VPBlockBase * getSinglePredecessor() const
Definition VPlan.h:215
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:170
VPBlockBase * getSingleHierarchicalPredecessor()
Definition VPlan.h:264
VPBlockBase * getSingleSuccessor() const
Definition VPlan.h:209
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:217
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition VPlanUtils.h:238
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBases IfTrue and IfFalse after BlockPtr.
Definition VPlanUtils.h:157
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:176
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:195
A recipe for generating conditional branches on the bits of a mask.
Definition VPlan.h:2921
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createElementCount(Type *Ty, ElementCount EC)
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Definition VPlan.h:3407
Type * getScalarType() const
Returns the scalar type of the induction.
Definition VPlan.h:3434
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:422
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
Definition VPlanValue.h:417
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:395
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
Definition VPlanValue.h:407
Template specialization of the standard LLVM dominator tree utility for VPBlockBases.
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
Definition VPlan.h:3495
A recipe to combine multiple recipes into a single 'expression' recipe, which should be considered a ...
Definition VPlan.h:2966
A pure virtual base class for all recipes modeling header phis, including phis for first order recurr...
Definition VPlan.h:1964
virtual VPValue * getBackedgeValue()
Returns the incoming value from the loop backedge.
Definition VPlan.h:2012
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2001
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition VPlan.h:3904
BasicBlock * getIRBasicBlock() const
Definition VPlan.h:3928
Class to record and manage LLVM IR flags.
Definition VPlan.h:600
static LLVM_ABI_FOR_TEST VPIRInstruction * create(Instruction &I)
Create a new VPIRPhi for \I , if it is a PHINode, otherwise create a VPIRInstruction.
Helper to manage IR metadata for recipes.
Definition VPlan.h:940
void intersect(const VPIRMetadata &MD)
Intersect this VPIRMetada object with MD, keeping only metadata nodes that are common to both.
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:981
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
Definition VPlan.h:1058
@ FirstOrderRecurrenceSplice
Definition VPlan.h:987
@ BuildVector
Creates a fixed-width vector containing all operands.
Definition VPlan.h:1011
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
Definition VPlan.h:1008
@ CanonicalIVIncrementForPart
Definition VPlan.h:1001
@ CalculateTripCountMinusVF
Definition VPlan.h:999
const InterleaveGroup< Instruction > * getInterleaveGroup() const
Definition VPlan.h:2531
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
Definition VPlan.h:2552
A recipe for interleaved memory operations with vector-predication intrinsics.
Definition VPlan.h:2604
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition VPlan.h:2563
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
Definition VPlan.h:3078
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:394
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayReadOrWriteMemory() const
Returns true if the recipe may read from or write to memory.
Definition VPlan.h:477
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
VPBasicBlock * getParent()
Definition VPlan.h:415
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:482
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
A recipe to represent inloop reduction operations with vector-predication intrinsics,...
Definition VPlan.h:2799
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
Definition VPlan.h:2653
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:3939
const VPBlockBase * getEntry() const
Definition VPlan.h:3975
void setExiting(VPBlockBase *ExitingBlock)
Set ExitingBlock as the exiting VPBlockBase of this VPRegionBlock.
Definition VPlan.h:3992
const VPBlockBase * getExiting() const
Definition VPlan.h:3987
VPBasicBlock * getPreheaderVPBB()
Returns the pre-header VPBasicBlock of the loop region.
Definition VPlan.h:4000
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2843
bool isSingleScalar() const
Definition VPlan.h:2888
VPValue * getMask()
Return the mask of a predicated VPReplicateRecipe.
Definition VPlan.h:2912
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition VPlan.h:3641
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:521
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:586
virtual VPSingleDefRecipe * clone() override=0
Clone the current recipe.
An analysis for type-inference for VPValues.
LLVMContext & getContext()
Return the LLVMContext used by the analysis.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:197
operand_range operands()
Definition VPlanValue.h:265
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:241
operand_iterator op_end()
Definition VPlanValue.h:263
operand_iterator op_begin()
Definition VPlanValue.h:261
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:236
void addOperand(VPValue *Operand)
Definition VPlanValue.h:230
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:135
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:174
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:85
void setUnderlyingValue(Value *Val)
Definition VPlanValue.h:184
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1400
unsigned getNumUsers() const
Definition VPlanValue.h:113
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
Definition VPlanValue.h:169
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition VPlan.cpp:1404
user_range users()
Definition VPlanValue.h:134
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1830
VPVectorEndPointerRecipe * clone() override
Clone the current recipe.
Definition VPlan.h:1874
A Recipe for widening the canonical induction variable of the vector loop.
Definition VPlan.h:3536
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1480
A recipe for handling GEP instructions.
Definition VPlan.h:1766
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
Definition VPlan.h:2029
PHINode * getPHINode() const
Definition VPlan.h:2071
VPValue * getStepValue()
Returns the step value of the induction.
Definition VPlan.h:2057
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
Definition VPlan.h:2074
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition VPlan.h:2104
VPValue * getLastUnrolledPartOperand()
Returns the VPValue representing the value of this induction at the last unrolled part,...
Definition VPlan.h:2185
A recipe for widening vector intrinsics.
Definition VPlan.h:1537
A common base class for widening memory operations.
Definition VPlan.h:3120
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:3182
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:3175
A recipe for widened phis.
Definition VPlan.h:2240
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1437
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4042
bool hasVF(ElementCount VF) const
Definition VPlan.h:4251
LLVMContext & getContext() const
Definition VPlan.h:4239
VPBasicBlock * getEntry()
Definition VPlan.h:4141
VPRegionBlock * createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="", bool IsReplicator=false)
Create a new VPRegionBlock with Entry, Exiting and Name.
Definition VPlan.h:4382
VPValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4231
bool hasScalableVF() const
Definition VPlan.h:4252
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
Definition VPlan.h:4237
VPValue & getVF()
Returns the VF of the vector loop region.
Definition VPlan.h:4234
VPValue * getTripCount() const
The trip count of the original loop.
Definition VPlan.h:4203
VPValue * getTrue()
Return a VPValue wrapping i1 true.
Definition VPlan.h:4308
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
Definition VPlan.h:4224
unsigned getUF() const
Definition VPlan.h:4271
bool hasUF(unsigned UF) const
Definition VPlan.h:4269
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition VPlan.h:4193
void setVF(ElementCount VF)
Definition VPlan.h:4245
bool isUnrolled() const
Returns true if the VPlan already has been unrolled, i.e.
Definition VPlan.h:4284
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1034
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
Definition VPlan.h:4217
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition VPlan.h:4166
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
Definition VPlan.h:4372
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition VPlan.h:4293
bool hasScalarVFOnly() const
Definition VPlan.h:4262
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition VPlan.h:4184
ArrayRef< VPValue * > getLiveIns() const
Return the list of live-in VPValues available in the VPlan.
Definition VPlan.h:4323
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
Definition VPlan.h:4347
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition VPlan.h:4189
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
Definition VPlan.h:4320
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition VPlan.h:4146
void setUF(unsigned UF)
Definition VPlan.h:4276
bool hasScalarTail() const
Returns true if the scalar tail may execute after the vector loop.
Definition VPlan.h:4424
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
iterator_range< user_iterator > users()
Definition Value.h:426
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:172
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:134
IteratorT end() const
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM)
Return A unsign-divided by B, rounded by the given rounding mode.
Definition APInt.cpp:2763
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
LogicalOp_match< LHS, RHS, Instruction::And > m_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R either in the form of L & R or L ?
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
AllRecipe_commutative_match< Instruction::And, Op0_t, Op1_t > m_c_BinaryAnd(const Op0_t &Op0, const Op1_t &Op1)
Match a binary AND operation.
AllRecipe_match< Instruction::Or, Op0_t, Op1_t > m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
Match a binary OR operation.
AllRecipe_commutative_match< Opcode, Op0_t, Op1_t > m_c_Binary(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_commutative_match< Instruction::Or, Op0_t, Op1_t > m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
AllRecipe_match< Opcode, Op0_t, Op1_t > m_Binary(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_False()
VPDerivedIV_match< Op0_t, Op1_t, Op2_t > m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::ActiveLaneMask, Op0_t, Op1_t, Op2_t > m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::BranchOnCount, Op0_t, Op1_t > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_True()
VPInstruction_match< VPInstruction::Broadcast, Op0_t > m_Broadcast(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExplicitVectorLength, Op0_t > m_EVL(const Op0_t &Op0)
VPInstruction_match< VPInstruction::BuildVector > m_BuildVector()
BuildVector is matches only its opcode, w/o matching its operands as the number of operands is not fi...
VPInstruction_match< VPInstruction::BranchOnCond, Op0_t > m_BranchOnCond(const Op0_t &Op0)
bind_ty< VPInstruction > m_VPInstruction(VPInstruction *&V)
Match a VPInstruction, capturing if we match.
initializer< Ty > init(const Ty &Val)
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
Definition VPlanUtils.h:44
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool isHeaderMask(const VPValue *V, VPlan &Plan)
Return true if V is a header mask in Plan.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:310
@ Offset
Definition DWP.cpp:477
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1707
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2454
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
constexpr from_range_t from_range
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:738
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2118
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:626
auto cast_or_null(const Y &Val)
Definition Casting.h:720
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition VPlanCFG.h:216
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
Definition STLExtras.h:1160
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Definition MathExtras.h:396
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1714
auto reverse(ContainerTy &&C)
Definition STLExtras.h:400
iterator_range< po_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_post_order_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in post order while traversing through ...
Definition VPlanCFG.h:236
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1632
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1721
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition STLExtras.h:317
RecurKind
These are the kinds of recurrences that we support.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ AddChainWithSubs
A chain of adds and subs.
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
Definition STLExtras.h:1936
DWARFExpression::Operation Op
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition STLExtras.h:1943
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1740
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:591
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Definition STLExtras.h:2070
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
std::unique_ptr< VPlan > VPlanPtr
Definition VPlan.h:77
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:836
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition Hashing.h:465
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
An information struct used to provide DenseMap with the various necessary components for a given valu...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
A recipe for handling first-order recurrence phis.
Definition VPlan.h:2283
A recipe for widening load operations with vector-predication intrinsics, using the address to load f...
Definition VPlan.h:3242
A recipe for widening load operations, using the address to load from and an optional mask.
Definition VPlan.h:3202
A recipe for widening select instructions.
Definition VPlan.h:1720
A recipe for widening store operations with vector-predication intrinsics, using the value to store,...
Definition VPlan.h:3324
A recipe for widening store operations, using the stored value, the address to store to and an option...
Definition VPlan.h:3282
static void materializeBroadcasts(VPlan &Plan)
Add explicit broadcasts for live-ins and VPValues defined in Plan's entry block if they are used as v...
static void materializeBackedgeTakenCount(VPlan &Plan, VPBasicBlock *VectorPH)
Materialize the backedge-taken count to be computed explicitly using VPInstructions.
static void optimizeInductionExitUsers(VPlan &Plan, DenseMap< VPValue *, VPValue * > &EndValues, ScalarEvolution &SE)
If there's a single exit block, optimize its phi recipes that use exiting IV values by feeding them p...
static void canonicalizeEVLLoops(VPlan &Plan)
Transform EVL loops to use variable-length stepping after region dissolution.
static void dropPoisonGeneratingRecipes(VPlan &Plan, const std::function< bool(BasicBlock *)> &BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void createAndOptimizeReplicateRegions(VPlan &Plan)
Wrap predicated VPReplicateRecipes with a mask operand in an if-then region block and remove the mask...
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed)
static bool runPass(bool(*Transform)(VPlan &, ArgsTy...), VPlan &Plan, typename std::remove_reference< ArgsTy >::type &...Args)
Helper to run a VPlan transform Transform on VPlan, forwarding extra arguments to the transform.
static void addBranchWeightToMiddleTerminator(VPlan &Plan, ElementCount VF, std::optional< unsigned > VScaleForTuning)
Add branch weight metadata, if the Plan's middle block is terminated by a BranchOnCond recipe.
static void materializeBuildVectors(VPlan &Plan)
Add explicit Build[Struct]Vector recipes that combine multiple scalar values into single vectors.
static DenseMap< const SCEV *, Value * > expandSCEVs(VPlan &Plan, ScalarEvolution &SE)
Expand VPExpandSCEVRecipes in Plan's entry block.
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, VFRange &Range)
This function converts initial recipes to the abstract recipes and clamps Range based on cost model f...
static void materializeConstantVectorTripCount(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
static void addExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void replaceSymbolicStrides(VPlan &Plan, PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap)
Replace symbolic strides from StridesMap in Plan with constants when possible.
static void removeBranchOnConst(VPlan &Plan)
Remove BranchOnCond recipes with true or false conditions together with removing dead edges to their ...
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void materializeVectorTripCount(VPlan &Plan, VPBasicBlock *VectorPHVPBB, bool TailByMasking, bool RequiresScalarEpilogue)
Materialize vector trip count computations to a set of VPInstructions.
static void simplifyRecipes(VPlan &Plan)
Perform instcombine-like simplifications on recipes in Plan.
static LLVM_ABI_FOR_TEST bool tryToConvertVPInstructionsToVPRecipes(VPlanPtr &Plan, function_ref< const InductionDescriptor *(PHINode *)> GetIntOrFpInductionDescriptor, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void handleUncountableEarlyExit(VPBasicBlock *EarlyExitingVPBB, VPBasicBlock *EarlyExitVPBB, VPlan &Plan, VPBasicBlock *HeaderVPBB, VPBasicBlock *LatchVPBB)
Update Plan to account for the uncountable early exit from EarlyExitingVPBB to EarlyExitVPBB by.
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static void cse(VPlan &Plan)
Perform common-subexpression-elimination on Plan.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void dissolveLoopRegions(VPlan &Plan)
Replace loop regions with explicit CFG.
static void narrowInterleaveGroups(VPlan &Plan, ElementCount VF, unsigned VectorRegWidth)
Try to convert a plan with interleave groups with VF elements to a plan with the interleave groups re...
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.
static void materializeVFAndVFxUF(VPlan &Plan, VPBasicBlock *VectorPH, ElementCount VF)
Materialize VF and VFxUF to be computed explicitly using VPInstructions.