43#define DEBUG_TYPE "vector-combine"
49STATISTIC(NumVecLoad,
"Number of vector loads formed");
50STATISTIC(NumVecCmp,
"Number of vector compares formed");
51STATISTIC(NumVecBO,
"Number of vector binops formed");
52STATISTIC(NumVecCmpBO,
"Number of vector compare + binop formed");
53STATISTIC(NumShufOfBitcast,
"Number of shuffles moved after bitcast");
54STATISTIC(NumScalarOps,
"Number of scalar unary + binary ops formed");
55STATISTIC(NumScalarCmp,
"Number of scalar compares formed");
56STATISTIC(NumScalarIntrinsic,
"Number of scalar intrinsic calls formed");
60 cl::desc(
"Disable all vector combine transforms"));
64 cl::desc(
"Disable binop extract to shuffle transforms"));
68 cl::desc(
"Max number of instructions to scan for vector combining."));
70static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
78 bool TryEarlyFoldsOnly)
81 TryEarlyFoldsOnly(TryEarlyFoldsOnly) {}
88 const TargetTransformInfo &TTI;
89 const DominatorTree &DT;
94 const SimplifyQuery SQ;
98 bool TryEarlyFoldsOnly;
100 InstructionWorklist Worklist;
109 bool vectorizeLoadInsert(Instruction &
I);
110 bool widenSubvectorLoad(Instruction &
I);
111 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
112 ExtractElementInst *Ext1,
113 unsigned PreferredExtractIndex)
const;
114 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
115 const Instruction &
I,
116 ExtractElementInst *&ConvertToShuffle,
117 unsigned PreferredExtractIndex);
120 bool foldExtractExtract(Instruction &
I);
121 bool foldInsExtFNeg(Instruction &
I);
122 bool foldInsExtBinop(Instruction &
I);
123 bool foldInsExtVectorToShuffle(Instruction &
I);
124 bool foldBitOpOfCastops(Instruction &
I);
125 bool foldBitOpOfCastConstant(Instruction &
I);
126 bool foldBitcastShuffle(Instruction &
I);
127 bool scalarizeOpOrCmp(Instruction &
I);
128 bool scalarizeVPIntrinsic(Instruction &
I);
129 bool foldExtractedCmps(Instruction &
I);
130 bool foldBinopOfReductions(Instruction &
I);
131 bool foldSingleElementStore(Instruction &
I);
132 bool scalarizeLoadExtract(Instruction &
I);
133 bool scalarizeExtExtract(Instruction &
I);
134 bool foldConcatOfBoolMasks(Instruction &
I);
135 bool foldPermuteOfBinops(Instruction &
I);
136 bool foldShuffleOfBinops(Instruction &
I);
137 bool foldShuffleOfSelects(Instruction &
I);
138 bool foldShuffleOfCastops(Instruction &
I);
139 bool foldShuffleOfShuffles(Instruction &
I);
140 bool foldShuffleOfIntrinsics(Instruction &
I);
141 bool foldShuffleToIdentity(Instruction &
I);
142 bool foldShuffleFromReductions(Instruction &
I);
143 bool foldShuffleChainsToReduce(Instruction &
I);
144 bool foldCastFromReductions(Instruction &
I);
145 bool foldSelectShuffle(Instruction &
I,
bool FromReduction =
false);
146 bool foldInterleaveIntrinsics(Instruction &
I);
147 bool shrinkType(Instruction &
I);
148 bool shrinkLoadForShuffles(Instruction &
I);
149 bool shrinkPhiOfShuffles(Instruction &
I);
151 void replaceValue(Instruction &Old,
Value &New,
bool Erase =
true) {
157 Worklist.pushUsersToWorkList(*NewI);
158 Worklist.pushValue(NewI);
175 SmallPtrSet<Value *, 4> Visited;
180 OpI,
nullptr,
nullptr, [&](
Value *V) {
185 NextInst = NextInst->getNextNode();
190 Worklist.pushUsersToWorkList(*OpI);
191 Worklist.pushValue(OpI);
211 if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
212 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
218 Type *ScalarTy = Load->getType()->getScalarType();
220 unsigned MinVectorSize =
TTI.getMinVectorRegisterBitWidth();
221 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
228bool VectorCombine::vectorizeLoadInsert(
Instruction &
I) {
254 Value *SrcPtr =
Load->getPointerOperand()->stripPointerCasts();
257 unsigned MinVecNumElts = MinVectorSize / ScalarSize;
258 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts,
false);
259 unsigned OffsetEltIndex = 0;
267 unsigned OffsetBitWidth =
DL->getIndexTypeSizeInBits(SrcPtr->
getType());
268 APInt
Offset(OffsetBitWidth, 0);
278 uint64_t ScalarSizeInBytes = ScalarSize / 8;
279 if (
Offset.urem(ScalarSizeInBytes) != 0)
283 OffsetEltIndex =
Offset.udiv(ScalarSizeInBytes).getZExtValue();
284 if (OffsetEltIndex >= MinVecNumElts)
301 unsigned AS =
Load->getPointerAddressSpace();
320 unsigned OutputNumElts = Ty->getNumElements();
322 assert(OffsetEltIndex < MinVecNumElts &&
"Address offset too big");
323 Mask[0] = OffsetEltIndex;
330 if (OldCost < NewCost || !NewCost.
isValid())
341 replaceValue(
I, *VecLd);
349bool VectorCombine::widenSubvectorLoad(Instruction &
I) {
352 if (!Shuf->isIdentityWithPadding())
358 unsigned OpIndex =
any_of(Shuf->getShuffleMask(), [&NumOpElts](
int M) {
359 return M >= (int)(NumOpElts);
370 Value *SrcPtr =
Load->getPointerOperand()->stripPointerCasts();
378 unsigned AS =
Load->getPointerAddressSpace();
393 if (OldCost < NewCost || !NewCost.
isValid())
400 replaceValue(
I, *VecLd);
407ExtractElementInst *VectorCombine::getShuffleExtract(
408 ExtractElementInst *Ext0, ExtractElementInst *Ext1,
412 assert(Index0C && Index1C &&
"Expected constant extract indexes");
414 unsigned Index0 = Index0C->getZExtValue();
415 unsigned Index1 = Index1C->getZExtValue();
418 if (Index0 == Index1)
442 if (PreferredExtractIndex == Index0)
444 if (PreferredExtractIndex == Index1)
448 return Index0 > Index1 ? Ext0 : Ext1;
456bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
457 ExtractElementInst *Ext1,
458 const Instruction &
I,
459 ExtractElementInst *&ConvertToShuffle,
460 unsigned PreferredExtractIndex) {
463 assert(Ext0IndexC && Ext1IndexC &&
"Expected constant extract indexes");
465 unsigned Opcode =
I.getOpcode();
478 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
479 "Expected a compare");
489 unsigned Ext0Index = Ext0IndexC->getZExtValue();
490 unsigned Ext1Index = Ext1IndexC->getZExtValue();
504 unsigned BestExtIndex = Extract0Cost > Extract1Cost ? Ext0Index : Ext1Index;
505 unsigned BestInsIndex = Extract0Cost > Extract1Cost ? Ext1Index : Ext0Index;
506 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
511 if (Ext0Src == Ext1Src && Ext0Index == Ext1Index) {
516 bool HasUseTax = Ext0 == Ext1 ? !Ext0->
hasNUses(2)
518 OldCost = CheapExtractCost + ScalarOpCost;
519 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
523 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
524 NewCost = VectorOpCost + CheapExtractCost +
529 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
530 if (ConvertToShuffle) {
542 SmallVector<int> ShuffleMask(FixedVecTy->getNumElements(),
544 ShuffleMask[BestInsIndex] = BestExtIndex;
546 VecTy, VecTy, ShuffleMask,
CostKind, 0,
547 nullptr, {ConvertToShuffle});
550 VecTy, VecTy, {},
CostKind, 0,
nullptr,
558 return OldCost < NewCost;
570 ShufMask[NewIndex] = OldIndex;
571 return Builder.CreateShuffleVector(Vec, ShufMask,
"shift");
623 V1,
"foldExtExtBinop");
628 VecBOInst->copyIRFlags(&
I);
634bool VectorCombine::foldExtractExtract(Instruction &
I) {
665 ExtractElementInst *ExtractToChange;
666 if (isExtractExtractCheap(Ext0, Ext1,
I, ExtractToChange, InsertIndex))
672 if (ExtractToChange) {
673 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
678 if (ExtractToChange == Ext0)
687 ? foldExtExtCmp(ExtOp0, ExtOp1, ExtIndex,
I)
688 : foldExtExtBinop(ExtOp0, ExtOp1, ExtIndex,
I);
691 replaceValue(
I, *NewExt);
697bool VectorCombine::foldInsExtFNeg(Instruction &
I) {
717 if (!SrcVecTy || ScalarTy != SrcVecTy->getScalarType())
721 unsigned NumElts = VecTy->getNumElements();
722 if (Index >= NumElts)
728 SmallVector<int>
Mask(NumElts);
729 std::iota(
Mask.begin(),
Mask.end(), 0);
746 bool NeedLenChg = SrcVecTy->getNumElements() != NumElts;
749 SmallVector<int> SrcMask;
754 VecTy, SrcVecTy, SrcMask,
CostKind);
757 if (NewCost > OldCost)
772 replaceValue(
I, *NewShuf);
778bool VectorCombine::foldInsExtBinop(Instruction &
I) {
779 BinaryOperator *VecBinOp, *SclBinOp;
811 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
813 if (NewCost > OldCost)
824 NewInst->copyIRFlags(VecBinOp);
825 NewInst->andIRFlags(SclBinOp);
830 replaceValue(
I, *NewBO);
836bool VectorCombine::foldBitOpOfCastops(Instruction &
I) {
839 if (!BinOp || !BinOp->isBitwiseLogicOp())
845 if (!LHSCast || !RHSCast) {
846 LLVM_DEBUG(
dbgs() <<
" One or both operands are not cast instructions\n");
852 if (CastOpcode != RHSCast->getOpcode())
856 switch (CastOpcode) {
857 case Instruction::BitCast:
858 case Instruction::Trunc:
859 case Instruction::SExt:
860 case Instruction::ZExt:
866 Value *LHSSrc = LHSCast->getOperand(0);
867 Value *RHSSrc = RHSCast->getOperand(0);
873 auto *SrcTy = LHSSrc->
getType();
874 auto *DstTy =
I.getType();
877 if (CastOpcode != Instruction::BitCast &&
882 if (!SrcTy->getScalarType()->isIntegerTy() ||
883 !DstTy->getScalarType()->isIntegerTy())
898 LHSCastCost + RHSCastCost;
909 if (!LHSCast->hasOneUse())
910 NewCost += LHSCastCost;
911 if (!RHSCast->hasOneUse())
912 NewCost += RHSCastCost;
915 <<
" NewCost=" << NewCost <<
"\n");
917 if (NewCost > OldCost)
922 BinOp->getName() +
".inner");
924 NewBinOp->copyIRFlags(BinOp);
938 replaceValue(
I, *Result);
947bool VectorCombine::foldBitOpOfCastConstant(Instruction &
I) {
963 switch (CastOpcode) {
964 case Instruction::BitCast:
965 case Instruction::ZExt:
966 case Instruction::SExt:
967 case Instruction::Trunc:
973 Value *LHSSrc = LHSCast->getOperand(0);
975 auto *SrcTy = LHSSrc->
getType();
976 auto *DstTy =
I.getType();
979 if (CastOpcode != Instruction::BitCast &&
984 if (!SrcTy->getScalarType()->isIntegerTy() ||
985 !DstTy->getScalarType()->isIntegerTy())
989 PreservedCastFlags RHSFlags;
1014 if (!LHSCast->hasOneUse())
1015 NewCost += LHSCastCost;
1017 LLVM_DEBUG(
dbgs() <<
"foldBitOpOfCastConstant: OldCost=" << OldCost
1018 <<
" NewCost=" << NewCost <<
"\n");
1020 if (NewCost > OldCost)
1025 LHSSrc, InvC,
I.getName() +
".inner");
1027 NewBinOp->copyIRFlags(&
I);
1037 replaceValue(
I, *Result);
1044bool VectorCombine::foldBitcastShuffle(Instruction &
I) {
1058 if (!DestTy || !SrcTy)
1061 unsigned DestEltSize = DestTy->getScalarSizeInBits();
1062 unsigned SrcEltSize = SrcTy->getScalarSizeInBits();
1063 if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0)
1073 if (!(BCTy0 && BCTy0->getElementType() == DestTy->getElementType()) &&
1074 !(BCTy1 && BCTy1->getElementType() == DestTy->getElementType()))
1078 SmallVector<int, 16> NewMask;
1079 if (DestEltSize <= SrcEltSize) {
1082 assert(SrcEltSize % DestEltSize == 0 &&
"Unexpected shuffle mask");
1083 unsigned ScaleFactor = SrcEltSize / DestEltSize;
1088 assert(DestEltSize % SrcEltSize == 0 &&
"Unexpected shuffle mask");
1089 unsigned ScaleFactor = DestEltSize / SrcEltSize;
1096 unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize;
1097 auto *NewShuffleTy =
1099 auto *OldShuffleTy =
1101 unsigned NumOps = IsUnary ? 1 : 2;
1111 TargetTransformInfo::CastContextHint::None,
1116 TargetTransformInfo::CastContextHint::None,
1119 LLVM_DEBUG(
dbgs() <<
"Found a bitcasted shuffle: " <<
I <<
"\n OldCost: "
1120 << OldCost <<
" vs NewCost: " << NewCost <<
"\n");
1122 if (NewCost > OldCost || !NewCost.
isValid())
1130 replaceValue(
I, *Shuf);
1137bool VectorCombine::scalarizeVPIntrinsic(Instruction &
I) {
1151 if (!ScalarOp0 || !ScalarOp1)
1159 auto IsAllTrueMask = [](
Value *MaskVal) {
1162 return ConstValue->isAllOnesValue();
1176 SmallVector<int>
Mask;
1178 Mask.resize(FVTy->getNumElements(), 0);
1187 Args.push_back(
V->getType());
1188 IntrinsicCostAttributes
Attrs(IntrID, VecTy, Args);
1193 std::optional<unsigned> FunctionalOpcode =
1195 std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt;
1196 if (!FunctionalOpcode) {
1205 IntrinsicCostAttributes
Attrs(*ScalarIntrID, VecTy->getScalarType(), Args);
1215 InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats;
1217 LLVM_DEBUG(
dbgs() <<
"Found a VP Intrinsic to scalarize: " << VPI
1220 <<
", Cost of scalarizing:" << NewCost <<
"\n");
1223 if (OldCost < NewCost || !NewCost.
isValid())
1234 bool SafeToSpeculate;
1240 *FunctionalOpcode, &VPI,
nullptr, &AC, &DT);
1241 if (!SafeToSpeculate &&
1248 {ScalarOp0, ScalarOp1})
1250 ScalarOp0, ScalarOp1);
1259bool VectorCombine::scalarizeOpOrCmp(Instruction &
I) {
1264 if (!UO && !BO && !CI && !
II)
1272 if (Arg->getType() !=
II->getType() &&
1282 for (User *U :
I.users())
1289 std::optional<uint64_t>
Index;
1291 auto Ops =
II ?
II->args() :
I.operands();
1295 uint64_t InsIdx = 0;
1300 if (OpTy->getElementCount().getKnownMinValue() <= InsIdx)
1306 else if (InsIdx != *Index)
1323 if (!
Index.has_value())
1327 Type *ScalarTy = VecTy->getScalarType();
1328 assert(VecTy->isVectorTy() &&
1331 "Unexpected types for insert element into binop or cmp");
1333 unsigned Opcode =
I.getOpcode();
1341 }
else if (UO || BO) {
1345 IntrinsicCostAttributes ScalarICA(
1346 II->getIntrinsicID(), ScalarTy,
1349 IntrinsicCostAttributes VectorICA(
1350 II->getIntrinsicID(), VecTy,
1357 Value *NewVecC =
nullptr;
1359 NewVecC =
simplifyCmpInst(CI->getPredicate(), VecCs[0], VecCs[1], SQ);
1362 simplifyUnOp(UO->getOpcode(), VecCs[0], UO->getFastMathFlags(), SQ);
1364 NewVecC =
simplifyBinOp(BO->getOpcode(), VecCs[0], VecCs[1], SQ);
1378 for (
auto [Idx,
Op, VecC, Scalar] :
enumerate(
Ops, VecCs, ScalarOps)) {
1380 II->getIntrinsicID(), Idx, &
TTI)))
1383 Instruction::InsertElement, VecTy,
CostKind, *Index, VecC, Scalar);
1384 OldCost += InsertCost;
1385 NewCost += !
Op->hasOneUse() * InsertCost;
1389 if (OldCost < NewCost || !NewCost.
isValid())
1399 ++NumScalarIntrinsic;
1409 Scalar = Builder.
CreateCmp(CI->getPredicate(), ScalarOps[0], ScalarOps[1]);
1415 Scalar->setName(
I.getName() +
".scalar");
1420 ScalarInst->copyIRFlags(&
I);
1423 replaceValue(
I, *Insert);
1430bool VectorCombine::foldExtractedCmps(Instruction &
I) {
1435 if (!BI || !
I.getType()->isIntegerTy(1))
1440 Value *B0 =
I.getOperand(0), *B1 =
I.getOperand(1);
1443 CmpPredicate
P0,
P1;
1455 uint64_t Index0, Index1;
1462 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1,
CostKind);
1465 assert((ConvertToShuf == Ext0 || ConvertToShuf == Ext1) &&
1466 "Unknown ExtractElementInst");
1471 unsigned CmpOpcode =
1486 Ext0Cost + Ext1Cost + CmpCost * 2 +
1492 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
1493 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
1498 ShufMask[CheapIndex] = ExpensiveIndex;
1503 NewCost += Ext0->
hasOneUse() ? 0 : Ext0Cost;
1504 NewCost += Ext1->
hasOneUse() ? 0 : Ext1Cost;
1509 if (OldCost < NewCost || !NewCost.
isValid())
1519 Value *
LHS = ConvertToShuf == Ext0 ? Shuf : VCmp;
1520 Value *
RHS = ConvertToShuf == Ext0 ? VCmp : Shuf;
1523 replaceValue(
I, *NewExt);
1536 unsigned ReductionOpc =
1542 CostBeforeReduction =
1543 TTI.getCastInstrCost(RedOp->getOpcode(), VecRedTy, ExtType,
1545 CostAfterReduction =
1546 TTI.getExtendedReductionCost(ReductionOpc, IsUnsigned,
II.getType(),
1550 if (RedOp &&
II.getIntrinsicID() == Intrinsic::vector_reduce_add &&
1556 (Op0->
getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
1563 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
1566 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
1568 TTI.getCastInstrCost(RedOp->getOpcode(), VecRedTy, MulType,
1571 CostBeforeReduction = ExtCost * 2 + MulCost + Ext2Cost;
1572 CostAfterReduction =
TTI.getMulAccReductionCost(
1573 IsUnsigned, ReductionOpc,
II.getType(), ExtType,
CostKind);
1576 CostAfterReduction =
TTI.getArithmeticReductionCost(ReductionOpc, VecRedTy,
1580bool VectorCombine::foldBinopOfReductions(Instruction &
I) {
1583 if (BinOpOpc == Instruction::Sub)
1584 ReductionIID = Intrinsic::vector_reduce_add;
1588 auto checkIntrinsicAndGetItsArgument = [](
Value *
V,
1593 if (
II->getIntrinsicID() == IID &&
II->hasOneUse())
1594 return II->getArgOperand(0);
1598 Value *V0 = checkIntrinsicAndGetItsArgument(
I.getOperand(0), ReductionIID);
1601 Value *V1 = checkIntrinsicAndGetItsArgument(
I.getOperand(1), ReductionIID);
1610 unsigned ReductionOpc =
1623 CostOfRedOperand0 + CostOfRedOperand1 +
1626 if (NewCost >= OldCost || !NewCost.
isValid())
1630 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
1633 if (BinOpOpc == Instruction::Or)
1634 VectorBO = Builder.
CreateOr(V0, V1,
"",
1640 replaceValue(
I, *Rdx);
1648 unsigned NumScanned = 0;
1649 return std::any_of(Begin, End, [&](
const Instruction &Instr) {
1658class ScalarizationResult {
1659 enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
1664 ScalarizationResult(StatusTy Status,
Value *ToFreeze =
nullptr)
1665 : Status(Status), ToFreeze(ToFreeze) {}
1668 ScalarizationResult(
const ScalarizationResult &
Other) =
default;
1669 ~ScalarizationResult() {
1670 assert(!ToFreeze &&
"freeze() not called with ToFreeze being set");
1673 static ScalarizationResult unsafe() {
return {StatusTy::Unsafe}; }
1674 static ScalarizationResult safe() {
return {StatusTy::Safe}; }
1675 static ScalarizationResult safeWithFreeze(
Value *ToFreeze) {
1676 return {StatusTy::SafeWithFreeze, ToFreeze};
1680 bool isSafe()
const {
return Status == StatusTy::Safe; }
1682 bool isUnsafe()
const {
return Status == StatusTy::Unsafe; }
1685 bool isSafeWithFreeze()
const {
return Status == StatusTy::SafeWithFreeze; }
1690 Status = StatusTy::Unsafe;
1694 void freeze(IRBuilderBase &Builder, Instruction &UserI) {
1695 assert(isSafeWithFreeze() &&
1696 "should only be used when freezing is required");
1698 "UserI must be a user of ToFreeze");
1699 IRBuilder<>::InsertPointGuard Guard(Builder);
1704 if (
U.get() == ToFreeze)
1721 uint64_t NumElements = VecTy->getElementCount().getKnownMinValue();
1725 if (
C->getValue().ult(NumElements))
1726 return ScalarizationResult::safe();
1727 return ScalarizationResult::unsafe();
1732 return ScalarizationResult::unsafe();
1734 APInt Zero(IntWidth, 0);
1735 APInt MaxElts(IntWidth, NumElements);
1741 true, &AC, CtxI, &DT)))
1742 return ScalarizationResult::safe();
1743 return ScalarizationResult::unsafe();
1756 if (ValidIndices.
contains(IdxRange))
1757 return ScalarizationResult::safeWithFreeze(IdxBase);
1758 return ScalarizationResult::unsafe();
1770 C->getZExtValue() *
DL.getTypeStoreSize(ScalarType));
1782bool VectorCombine::foldSingleElementStore(Instruction &
I) {
1794 if (!
match(
SI->getValueOperand(),
1801 Value *SrcAddr =
Load->getPointerOperand()->stripPointerCasts();
1804 if (!
Load->isSimple() ||
Load->getParent() !=
SI->getParent() ||
1805 !
DL->typeSizeEqualsStoreSize(
Load->getType()->getScalarType()) ||
1806 SrcAddr !=
SI->getPointerOperand()->stripPointerCasts())
1810 if (ScalarizableIdx.isUnsafe() ||
1817 Worklist.
push(Load);
1819 if (ScalarizableIdx.isSafeWithFreeze())
1822 SI->getValueOperand()->getType(),
SI->getPointerOperand(),
1823 {ConstantInt::get(Idx->getType(), 0), Idx});
1827 std::max(
SI->getAlign(),
Load->getAlign()), NewElement->
getType(), Idx,
1830 replaceValue(
I, *NSI);
1839bool VectorCombine::scalarizeLoadExtract(Instruction &
I) {
1849 if (LI->isVolatile() || !
DL->typeSizeEqualsStoreSize(VecTy->getScalarType()))
1854 LI->getPointerAddressSpace(),
CostKind);
1858 unsigned NumInstChecked = 0;
1859 DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze;
1862 for (
auto &Pair : NeedFreeze)
1863 Pair.second.discard();
1869 for (User *U : LI->users()) {
1871 if (!UI || UI->getParent() != LI->getParent())
1876 if (UI->use_empty())
1882 for (Instruction &
I :
1883 make_range(std::next(LI->getIterator()), UI->getIterator())) {
1890 LastCheckedInst = UI;
1895 if (ScalarIdx.isUnsafe())
1897 if (ScalarIdx.isSafeWithFreeze()) {
1898 NeedFreeze.try_emplace(UI, ScalarIdx);
1899 ScalarIdx.discard();
1905 Index ?
Index->getZExtValue() : -1);
1914 <<
"\n LoadExtractCost: " << OriginalCost
1915 <<
" vs ScalarizedCost: " << ScalarizedCost <<
"\n");
1917 if (ScalarizedCost >= OriginalCost)
1924 Type *ElemType = VecTy->getElementType();
1927 for (User *U : LI->users()) {
1929 Value *Idx = EI->getIndexOperand();
1932 auto It = NeedFreeze.find(EI);
1933 if (It != NeedFreeze.end())
1940 Builder.
CreateLoad(ElemType,
GEP, EI->getName() +
".scalar"));
1942 Align ScalarOpAlignment =
1944 NewLoad->setAlignment(ScalarOpAlignment);
1947 size_t Offset = ConstIdx->getZExtValue() *
DL->getTypeStoreSize(ElemType);
1948 AAMDNodes OldAAMD = LI->getAAMetadata();
1952 replaceValue(*EI, *NewLoad,
false);
1955 FailureGuard.release();
1959bool VectorCombine::scalarizeExtExtract(Instruction &
I) {
1974 Type *ScalarDstTy = DstTy->getElementType();
1975 if (
DL->getTypeSizeInBits(SrcTy) !=
DL->getTypeSizeInBits(ScalarDstTy))
1981 unsigned ExtCnt = 0;
1982 bool ExtLane0 =
false;
1983 for (User *U :
Ext->users()) {
1997 Instruction::And, ScalarDstTy,
CostKind,
2000 (ExtCnt - ExtLane0) *
2002 Instruction::LShr, ScalarDstTy,
CostKind,
2005 if (ScalarCost > VectorCost)
2008 Value *ScalarV =
Ext->getOperand(0);
2015 uint64_t SrcEltSizeInBits =
DL->getTypeSizeInBits(SrcTy->getElementType());
2016 uint64_t EltBitMask = (1ull << SrcEltSizeInBits) - 1;
2017 for (User *U :
Ext->users()) {
2023 U->replaceAllUsesWith(
And);
2031bool VectorCombine::foldConcatOfBoolMasks(Instruction &
I) {
2032 Type *Ty =
I.getType();
2037 if (
DL->isBigEndian())
2048 uint64_t ShAmtX = 0;
2056 uint64_t ShAmtY = 0;
2064 if (ShAmtX > ShAmtY) {
2072 uint64_t ShAmtDiff = ShAmtY - ShAmtX;
2073 unsigned NumSHL = (ShAmtX > 0) + (ShAmtY > 0);
2078 MaskTy->getNumElements() != ShAmtDiff ||
2079 MaskTy->getNumElements() > (
BitWidth / 2))
2084 Type::getIntNTy(Ty->
getContext(), ConcatTy->getNumElements());
2085 auto *MaskIntTy = Type::getIntNTy(Ty->
getContext(), ShAmtDiff);
2088 std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
2105 if (Ty != ConcatIntTy)
2111 LLVM_DEBUG(
dbgs() <<
"Found a concatenation of bitcasted bool masks: " <<
I
2112 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2115 if (NewCost > OldCost)
2125 if (Ty != ConcatIntTy) {
2135 replaceValue(
I, *Result);
2141bool VectorCombine::foldPermuteOfBinops(Instruction &
I) {
2142 BinaryOperator *BinOp;
2143 ArrayRef<int> OuterMask;
2152 Value *Op00, *Op01, *Op10, *Op11;
2153 ArrayRef<int> Mask0, Mask1;
2160 if (!Match0 && !Match1)
2173 if (!ShuffleDstTy || !BinOpTy || !Op0Ty || !Op1Ty)
2176 unsigned NumSrcElts = BinOpTy->getNumElements();
2181 any_of(OuterMask, [NumSrcElts](
int M) {
return M >= (int)NumSrcElts; }))
2185 SmallVector<int> NewMask0, NewMask1;
2186 for (
int M : OuterMask) {
2187 if (M < 0 || M >= (
int)NumSrcElts) {
2191 NewMask0.
push_back(Match0 ? Mask0[M] : M);
2192 NewMask1.
push_back(Match1 ? Mask1[M] : M);
2196 unsigned NumOpElts = Op0Ty->getNumElements();
2197 bool IsIdentity0 = ShuffleDstTy == Op0Ty &&
2198 all_of(NewMask0, [NumOpElts](
int M) {
return M < (int)NumOpElts; }) &&
2200 bool IsIdentity1 = ShuffleDstTy == Op1Ty &&
2201 all_of(NewMask1, [NumOpElts](
int M) {
return M < (int)NumOpElts; }) &&
2208 BinOpTy, OuterMask,
CostKind, 0,
nullptr, {BinOp}, &
I);
2224 Op0Ty, NewMask0,
CostKind, 0,
nullptr, {Op00, Op01});
2228 Op1Ty, NewMask1,
CostKind, 0,
nullptr, {Op10, Op11});
2230 LLVM_DEBUG(
dbgs() <<
"Found a shuffle feeding a shuffled binop: " <<
I
2231 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2235 if (NewCost > OldCost)
2246 NewInst->copyIRFlags(BinOp);
2250 replaceValue(
I, *NewBO);
2256bool VectorCombine::foldShuffleOfBinops(Instruction &
I) {
2257 ArrayRef<int> OldMask;
2264 if (
LHS->getOpcode() !=
RHS->getOpcode())
2268 bool IsCommutative =
false;
2277 IsCommutative = BinaryOperator::isCommutative(BO->getOpcode());
2288 if (!ShuffleDstTy || !BinResTy || !BinOpTy ||
X->getType() !=
Z->getType())
2291 unsigned NumSrcElts = BinOpTy->getNumElements();
2294 if (IsCommutative &&
X != Z &&
Y != W && (
X == W ||
Y == Z))
2297 auto ConvertToUnary = [NumSrcElts](
int &
M) {
2298 if (M >= (
int)NumSrcElts)
2302 SmallVector<int> NewMask0(OldMask);
2310 SmallVector<int> NewMask1(OldMask);
2333 ArrayRef<int> InnerMask;
2335 m_Mask(InnerMask)))) &&
2338 [NumSrcElts](
int M) {
return M < (int)NumSrcElts; })) {
2350 bool ReducedInstCount =
false;
2351 ReducedInstCount |= MergeInner(
X, 0, NewMask0,
CostKind);
2352 ReducedInstCount |= MergeInner(
Y, 0, NewMask1,
CostKind);
2353 ReducedInstCount |= MergeInner(Z, NumSrcElts, NewMask0,
CostKind);
2354 ReducedInstCount |= MergeInner(W, NumSrcElts, NewMask1,
CostKind);
2356 auto *ShuffleCmpTy =
2373 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2380 if (ReducedInstCount ? (NewCost > OldCost) : (NewCost >= OldCost))
2388 : Builder.
CreateCmp(PredLHS, Shuf0, Shuf1);
2392 NewInst->copyIRFlags(
LHS);
2393 NewInst->andIRFlags(
RHS);
2398 replaceValue(
I, *NewBO);
2405bool VectorCombine::foldShuffleOfSelects(Instruction &
I) {
2407 Value *C1, *
T1, *F1, *C2, *T2, *F2;
2416 if (!C1VecTy || !C2VecTy || C1VecTy != C2VecTy)
2422 if (((SI0FOp ==
nullptr) != (SI1FOp ==
nullptr)) ||
2423 ((SI0FOp !=
nullptr) &&
2424 (SI0FOp->getFastMathFlags() != SI1FOp->getFastMathFlags())))
2430 auto SelOp = Instruction::Select;
2437 {
I.getOperand(0),
I.getOperand(1)}, &
I);
2441 Mask,
CostKind, 0,
nullptr, {C1, C2});
2447 toVectorTy(Type::getInt1Ty(
I.getContext()), DstVecTy->getNumElements()));
2452 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2454 if (NewCost > OldCost)
2463 NewSel = Builder.
CreateSelectFMF(ShuffleCmp, ShuffleTrue, ShuffleFalse,
2464 SI0FOp->getFastMathFlags());
2466 NewSel = Builder.
CreateSelect(ShuffleCmp, ShuffleTrue, ShuffleFalse);
2471 replaceValue(
I, *NewSel);
2477bool VectorCombine::foldShuffleOfCastops(Instruction &
I) {
2479 ArrayRef<int> OldMask;
2489 if (C0->getSrcTy() != C1->getSrcTy())
2493 if (Opcode != C1->getOpcode()) {
2495 Opcode = Instruction::SExt;
2503 if (!ShuffleDstTy || !CastDstTy || !CastSrcTy)
2506 unsigned NumSrcElts = CastSrcTy->getNumElements();
2507 unsigned NumDstElts = CastDstTy->getNumElements();
2508 assert((NumDstElts == NumSrcElts || Opcode == Instruction::BitCast) &&
2509 "Only bitcasts expected to alter src/dst element counts");
2513 if (NumDstElts != NumSrcElts && (NumSrcElts % NumDstElts) != 0 &&
2514 (NumDstElts % NumSrcElts) != 0)
2517 SmallVector<int, 16> NewMask;
2518 if (NumSrcElts >= NumDstElts) {
2521 assert(NumSrcElts % NumDstElts == 0 &&
"Unexpected shuffle mask");
2522 unsigned ScaleFactor = NumSrcElts / NumDstElts;
2527 assert(NumDstElts % NumSrcElts == 0 &&
"Unexpected shuffle mask");
2528 unsigned ScaleFactor = NumDstElts / NumSrcElts;
2533 auto *NewShuffleDstTy =
2546 CastDstTy, OldMask,
CostKind, 0,
nullptr, {}, &
I);
2559 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2561 if (NewCost > OldCost)
2565 C1->getOperand(0), NewMask);
2570 NewInst->copyIRFlags(C0);
2571 NewInst->andIRFlags(C1);
2575 replaceValue(
I, *Cast);
2585bool VectorCombine::foldShuffleOfShuffles(Instruction &
I) {
2586 ArrayRef<int> OuterMask;
2587 Value *OuterV0, *OuterV1;
2592 ArrayRef<int> InnerMask0, InnerMask1;
2593 Value *X0, *X1, *Y0, *Y1;
2598 if (!Match0 && !Match1)
2603 SmallVector<int, 16> PoisonMask1;
2608 InnerMask1 = PoisonMask1;
2612 X0 = Match0 ? X0 : OuterV0;
2613 Y0 = Match0 ? Y0 : OuterV0;
2614 X1 = Match1 ? X1 : OuterV1;
2615 Y1 = Match1 ? Y1 : OuterV1;
2619 if (!ShuffleDstTy || !ShuffleSrcTy || !ShuffleImmTy ||
2623 unsigned NumSrcElts = ShuffleSrcTy->getNumElements();
2624 unsigned NumImmElts = ShuffleImmTy->getNumElements();
2629 SmallVector<int, 16> NewMask(OuterMask);
2630 Value *NewX =
nullptr, *NewY =
nullptr;
2631 for (
int &M : NewMask) {
2632 Value *Src =
nullptr;
2633 if (0 <= M && M < (
int)NumImmElts) {
2637 Src =
M >= (int)NumSrcElts ? Y0 : X0;
2638 M =
M >= (int)NumSrcElts ? (M - NumSrcElts) :
M;
2640 }
else if (M >= (
int)NumImmElts) {
2645 Src =
M >= (int)NumSrcElts ? Y1 : X1;
2646 M =
M >= (int)NumSrcElts ? (M - NumSrcElts) :
M;
2650 assert(0 <= M && M < (
int)NumSrcElts &&
"Unexpected shuffle mask index");
2659 if (!NewX || NewX == Src) {
2663 if (!NewY || NewY == Src) {
2679 replaceValue(
I, *NewX);
2696 bool IsUnary =
all_of(NewMask, [&](
int M) {
return M < (int)NumSrcElts; });
2702 nullptr, {NewX, NewY});
2704 NewCost += InnerCost0;
2706 NewCost += InnerCost1;
2709 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2711 if (NewCost > OldCost)
2715 replaceValue(
I, *Shuf);
2721bool VectorCombine::foldShuffleOfIntrinsics(Instruction &
I) {
2723 ArrayRef<int> OldMask;
2734 if (IID != II1->getIntrinsicID())
2739 if (!ShuffleDstTy || !II0Ty)
2745 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I)
2747 II0->getArgOperand(
I) != II1->getArgOperand(
I))
2754 II0Ty, OldMask,
CostKind, 0,
nullptr, {II0, II1}, &
I);
2758 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I) {
2760 NewArgsTy.
push_back(II0->getArgOperand(
I)->getType());
2764 ShuffleDstTy->getNumElements());
2770 IntrinsicCostAttributes NewAttr(IID, ShuffleDstTy, NewArgsTy);
2774 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2777 if (NewCost > OldCost)
2781 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I)
2786 II1->getArgOperand(
I), OldMask);
2794 NewInst->copyIRFlags(II0);
2795 NewInst->andIRFlags(II1);
2798 replaceValue(
I, *NewIntrinsic);
2808 int M = SV->getMaskValue(Lane);
2811 if (
static_cast<unsigned>(M) < NumElts) {
2812 U = &SV->getOperandUse(0);
2815 U = &SV->getOperandUse(1);
2826 auto [U, Lane] = IL;
2840 unsigned NumElts = Ty->getNumElements();
2841 if (Item.
size() == NumElts || NumElts == 1 || Item.
size() % NumElts != 0)
2847 std::iota(ConcatMask.
begin(), ConcatMask.
end(), 0);
2853 unsigned NumSlices = Item.
size() / NumElts;
2858 for (
unsigned Slice = 0; Slice < NumSlices; ++Slice) {
2859 Use *SliceV = Item[Slice * NumElts].first;
2860 if (!SliceV || SliceV->get()->
getType() != Ty)
2862 for (
unsigned Elt = 0; Elt < NumElts; ++Elt) {
2863 auto [V, Lane] = Item[Slice * NumElts + Elt];
2864 if (Lane !=
static_cast<int>(Elt) || SliceV->get() != V->get())
2877 auto [FrontU, FrontLane] = Item.
front();
2879 if (IdentityLeafs.
contains(FrontU)) {
2880 return FrontU->get();
2884 return Builder.CreateShuffleVector(FrontU->get(), Mask);
2886 if (ConcatLeafs.
contains(FrontU)) {
2890 for (
unsigned S = 0; S < Values.
size(); ++S)
2891 Values[S] = Item[S * NumElts].first->get();
2893 while (Values.
size() > 1) {
2896 std::iota(Mask.begin(), Mask.end(), 0);
2898 for (
unsigned S = 0; S < NewValues.
size(); ++S)
2900 Builder.CreateShuffleVector(Values[S * 2], Values[S * 2 + 1], Mask);
2908 unsigned NumOps =
I->getNumOperands() - (
II ? 1 : 0);
2910 for (
unsigned Idx = 0; Idx <
NumOps; Idx++) {
2913 Ops[Idx] =
II->getOperand(Idx);
2917 Ty, IdentityLeafs, SplatLeafs, ConcatLeafs,
2922 for (
const auto &Lane : Item)
2935 auto *
Value = Builder.CreateCmp(CI->getPredicate(),
Ops[0],
Ops[1]);
2945 auto *
Value = Builder.CreateCast(CI->getOpcode(),
Ops[0], DstTy);
2950 auto *
Value = Builder.CreateIntrinsic(DstTy,
II->getIntrinsicID(),
Ops);
2964bool VectorCombine::foldShuffleToIdentity(Instruction &
I) {
2966 if (!Ty ||
I.use_empty())
2970 for (
unsigned M = 0,
E = Ty->getNumElements(); M <
E; ++M)
2975 SmallPtrSet<Use *, 4> IdentityLeafs, SplatLeafs, ConcatLeafs;
2976 unsigned NumVisited = 0;
2978 while (!Worklist.
empty()) {
2983 auto [FrontU, FrontLane] = Item.
front();
2991 return X->getType() ==
Y->getType() &&
2996 if (FrontLane == 0 &&
2998 Ty->getNumElements() &&
3001 return !
E.value().first || (IsEquiv(
E.value().first->get(), FrontV) &&
3002 E.value().second == (int)
E.index());
3004 IdentityLeafs.
insert(FrontU);
3009 C &&
C->getSplatValue() &&
3017 SplatLeafs.
insert(FrontU);
3022 auto [FrontU, FrontLane] = Item.
front();
3023 auto [
U, Lane] = IL;
3024 return !
U || (
U->get() == FrontU->get() && Lane == FrontLane);
3026 SplatLeafs.
insert(FrontU);
3032 auto CheckLaneIsEquivalentToFirst = [Item](
InstLane IL) {
3036 Value *
V = IL.first->get();
3042 if (CI->getPredicate() !=
cast<CmpInst>(FrontV)->getPredicate())
3045 if (CI->getSrcTy()->getScalarType() !=
3050 SI->getOperand(0)->getType() !=
3057 II->getIntrinsicID() ==
3059 !
II->hasOperandBundles());
3066 BO && BO->isIntDivRem())
3071 }
else if (
isa<UnaryOperator, TruncInst, ZExtInst, SExtInst, FPToSIInst,
3072 FPToUIInst, SIToFPInst, UIToFPInst>(FrontU)) {
3079 if (DstTy && SrcTy &&
3080 SrcTy->getNumElements() == DstTy->getNumElements()) {
3091 !
II->hasOperandBundles()) {
3092 for (
unsigned Op = 0,
E =
II->getNumOperands() - 1;
Op <
E;
Op++) {
3111 ConcatLeafs.
insert(FrontU);
3118 if (NumVisited <= 1)
3121 LLVM_DEBUG(
dbgs() <<
"Found a superfluous identity shuffle: " <<
I <<
"\n");
3127 ConcatLeafs, Builder, &
TTI);
3128 replaceValue(
I, *V);
3135bool VectorCombine::foldShuffleFromReductions(Instruction &
I) {
3139 switch (
II->getIntrinsicID()) {
3140 case Intrinsic::vector_reduce_add:
3141 case Intrinsic::vector_reduce_mul:
3142 case Intrinsic::vector_reduce_and:
3143 case Intrinsic::vector_reduce_or:
3144 case Intrinsic::vector_reduce_xor:
3145 case Intrinsic::vector_reduce_smin:
3146 case Intrinsic::vector_reduce_smax:
3147 case Intrinsic::vector_reduce_umin:
3148 case Intrinsic::vector_reduce_umax:
3157 std::queue<Value *> Worklist;
3158 SmallPtrSet<Value *, 4> Visited;
3159 ShuffleVectorInst *Shuffle =
nullptr;
3163 while (!Worklist.empty()) {
3164 Value *CV = Worklist.front();
3176 if (CI->isBinaryOp()) {
3177 for (
auto *
Op : CI->operand_values())
3181 if (Shuffle && Shuffle != SV)
3198 for (
auto *V : Visited)
3199 for (
auto *U :
V->users())
3200 if (!Visited.contains(U) && U != &
I)
3203 FixedVectorType *VecType =
3207 FixedVectorType *ShuffleInputType =
3209 if (!ShuffleInputType)
3215 SmallVector<int> ConcatMask;
3217 sort(ConcatMask, [](
int X,
int Y) {
return (
unsigned)
X < (unsigned)
Y; });
3218 bool UsesSecondVec =
3219 any_of(ConcatMask, [&](
int M) {
return M >= (int)NumInputElts; });
3226 ShuffleInputType, ConcatMask,
CostKind);
3228 LLVM_DEBUG(
dbgs() <<
"Found a reduction feeding from a shuffle: " << *Shuffle
3230 LLVM_DEBUG(
dbgs() <<
" OldCost: " << OldCost <<
" vs NewCost: " << NewCost
3232 bool MadeChanges =
false;
3233 if (NewCost < OldCost) {
3237 LLVM_DEBUG(
dbgs() <<
"Created new shuffle: " << *NewShuffle <<
"\n");
3238 replaceValue(*Shuffle, *NewShuffle);
3244 MadeChanges |= foldSelectShuffle(*Shuffle,
true);
3290bool VectorCombine::foldShuffleChainsToReduce(Instruction &
I) {
3292 std::queue<Value *> InstWorklist;
3296 std::optional<unsigned int> CommonCallOp = std::nullopt;
3297 std::optional<Instruction::BinaryOps> CommonBinOp = std::nullopt;
3299 bool IsFirstCallOrBinInst =
true;
3300 bool ShouldBeCallOrBinInst =
true;
3306 SmallVector<Value *, 2> PrevVecV(2,
nullptr);
3316 int64_t
VecSize = FVT->getNumElements();
3322 unsigned int NumLevels =
Log2_64_Ceil(VecSize), VisitedCnt = 0;
3323 int64_t ShuffleMaskHalf = 1, ExpectedParityMask = 0;
3333 for (
int Cur = VecSize, Mask = NumLevels - 1; Cur > 1;
3334 Cur = (Cur + 1) / 2, --
Mask) {
3336 ExpectedParityMask |= (1ll <<
Mask);
3339 InstWorklist.push(VecOpEE);
3341 while (!InstWorklist.empty()) {
3342 Value *CI = InstWorklist.front();
3346 if (!ShouldBeCallOrBinInst)
3349 if (!IsFirstCallOrBinInst &&
3350 any_of(PrevVecV, [](
Value *VecV) {
return VecV ==
nullptr; }))
3355 if (
II != (IsFirstCallOrBinInst ? VecOpEE : PrevVecV[0]))
3357 IsFirstCallOrBinInst =
false;
3360 CommonCallOp =
II->getIntrinsicID();
3361 if (
II->getIntrinsicID() != *CommonCallOp)
3364 switch (
II->getIntrinsicID()) {
3365 case Intrinsic::umin:
3366 case Intrinsic::umax:
3367 case Intrinsic::smin:
3368 case Intrinsic::smax: {
3369 auto *Op0 =
II->getOperand(0);
3370 auto *Op1 =
II->getOperand(1);
3378 ShouldBeCallOrBinInst ^= 1;
3380 IntrinsicCostAttributes ICA(
3381 *CommonCallOp,
II->getType(),
3382 {PrevVecV[0]->getType(), PrevVecV[1]->getType()});
3389 InstWorklist.push(PrevVecV[1]);
3390 InstWorklist.push(PrevVecV[0]);
3394 if (!ShouldBeCallOrBinInst)
3397 if (!IsFirstCallOrBinInst &&
3398 any_of(PrevVecV, [](
Value *VecV) {
return VecV ==
nullptr; }))
3401 if (BinOp != (IsFirstCallOrBinInst ? VecOpEE : PrevVecV[0]))
3403 IsFirstCallOrBinInst =
false;
3411 switch (*CommonBinOp) {
3412 case BinaryOperator::Add:
3413 case BinaryOperator::Mul:
3414 case BinaryOperator::Or:
3415 case BinaryOperator::And:
3416 case BinaryOperator::Xor: {
3426 ShouldBeCallOrBinInst ^= 1;
3433 InstWorklist.push(PrevVecV[1]);
3434 InstWorklist.push(PrevVecV[0]);
3438 if (ShouldBeCallOrBinInst ||
3439 any_of(PrevVecV, [](
Value *VecV) {
return VecV ==
nullptr; }))
3442 if (SVInst != PrevVecV[1])
3445 ArrayRef<int> CurMask;
3451 for (
int Mask = 0, MaskSize = CurMask.
size(); Mask != MaskSize; ++Mask) {
3452 if (Mask < ShuffleMaskHalf &&
3453 CurMask[Mask] != ShuffleMaskHalf + Mask - (ExpectedParityMask & 1))
3455 if (Mask >= ShuffleMaskHalf && CurMask[Mask] != -1)
3460 ShuffleMaskHalf *= 2;
3461 ShuffleMaskHalf -= (ExpectedParityMask & 1);
3462 ExpectedParityMask >>= 1;
3465 SVInst->getType(), SVInst->getType(),
3469 if (!ExpectedParityMask && VisitedCnt == NumLevels)
3472 ShouldBeCallOrBinInst ^= 1;
3479 if (ShouldBeCallOrBinInst)
3482 assert(VecSize != -1 &&
"Expected Match for Vector Size");
3484 Value *FinalVecV = PrevVecV[0];
3496 IntrinsicCostAttributes ICA(ReducedOp, FinalVecVTy, {FinalVecV});
3499 if (NewCost >= OrigCost)
3502 auto *ReducedResult =
3504 replaceValue(
I, *ReducedResult);
3513bool VectorCombine::foldCastFromReductions(Instruction &
I) {
3518 bool TruncOnly =
false;
3521 case Intrinsic::vector_reduce_add:
3522 case Intrinsic::vector_reduce_mul:
3525 case Intrinsic::vector_reduce_and:
3526 case Intrinsic::vector_reduce_or:
3527 case Intrinsic::vector_reduce_xor:
3534 Value *ReductionSrc =
I.getOperand(0);
3546 Type *ResultTy =
I.getType();
3549 ReductionOpc, ReductionSrcTy, std::nullopt,
CostKind);
3559 if (OldCost <= NewCost || !NewCost.
isValid())
3563 II->getIntrinsicID(), {Src});
3565 replaceValue(
I, *NewCast);
3574 constexpr unsigned MaxVisited = 32;
3577 bool FoundReduction =
false;
3580 while (!WorkList.
empty()) {
3582 for (
User *U :
I->users()) {
3584 if (!UI || !Visited.
insert(UI).second)
3586 if (Visited.
size() > MaxVisited)
3592 switch (
II->getIntrinsicID()) {
3593 case Intrinsic::vector_reduce_add:
3594 case Intrinsic::vector_reduce_mul:
3595 case Intrinsic::vector_reduce_and:
3596 case Intrinsic::vector_reduce_or:
3597 case Intrinsic::vector_reduce_xor:
3598 case Intrinsic::vector_reduce_smin:
3599 case Intrinsic::vector_reduce_smax:
3600 case Intrinsic::vector_reduce_umin:
3601 case Intrinsic::vector_reduce_umax:
3602 FoundReduction =
true;
3615 return FoundReduction;
3628bool VectorCombine::foldSelectShuffle(Instruction &
I,
bool FromReduction) {
3633 if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
3641 SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
3643 if (!
I ||
I->getOperand(0)->getType() != VT)
3645 return any_of(
I->users(), [&](User *U) {
3646 return U != Op0 && U != Op1 &&
3647 !(isa<ShuffleVectorInst>(U) &&
3648 (InputShuffles.contains(cast<Instruction>(U)) ||
3649 isInstructionTriviallyDead(cast<Instruction>(U))));
3652 if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
3653 checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
3661 for (
auto *U :
I->users()) {
3663 if (!SV || SV->getType() != VT)
3665 if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
3666 (SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
3673 if (!collectShuffles(Op0) || !collectShuffles(Op1))
3677 if (FromReduction && Shuffles.
size() > 1)
3682 if (!FromReduction) {
3683 for (ShuffleVectorInst *SV : Shuffles) {
3684 for (
auto *U : SV->users()) {
3687 Shuffles.push_back(SSV);
3699 int MaxV1Elt = 0, MaxV2Elt = 0;
3700 unsigned NumElts = VT->getNumElements();
3701 for (ShuffleVectorInst *SVN : Shuffles) {
3702 SmallVector<int>
Mask;
3703 SVN->getShuffleMask(Mask);
3707 Value *SVOp0 = SVN->getOperand(0);
3708 Value *SVOp1 = SVN->getOperand(1);
3713 for (
int &Elem : Mask) {
3719 if (SVOp0 == Op1 && SVOp1 == Op0) {
3723 if (SVOp0 != Op0 || SVOp1 != Op1)
3729 SmallVector<int> ReconstructMask;
3730 for (
unsigned I = 0;
I <
Mask.size();
I++) {
3733 }
else if (Mask[
I] <
static_cast<int>(NumElts)) {
3734 MaxV1Elt = std::max(MaxV1Elt, Mask[
I]);
3735 auto It =
find_if(V1, [&](
const std::pair<int, int> &
A) {
3736 return Mask[
I] ==
A.first;
3745 MaxV2Elt = std::max<int>(MaxV2Elt, Mask[
I] - NumElts);
3746 auto It =
find_if(V2, [&](
const std::pair<int, int> &
A) {
3747 return Mask[
I] -
static_cast<int>(NumElts) ==
A.first;
3761 sort(ReconstructMask);
3762 OrigReconstructMasks.
push_back(std::move(ReconstructMask));
3770 (MaxV1Elt ==
static_cast<int>(V1.
size()) - 1 &&
3771 MaxV2Elt ==
static_cast<int>(V2.
size()) - 1))
3783 if (InputShuffles.contains(SSV))
3785 return SV->getMaskValue(M);
3793 std::pair<int, int>
Y) {
3794 int MXA = GetBaseMaskValue(
A,
X.first);
3795 int MYA = GetBaseMaskValue(
A,
Y.first);
3798 stable_sort(V1, [&](std::pair<int, int>
A, std::pair<int, int>
B) {
3799 return SortBase(SVI0A,
A,
B);
3801 stable_sort(V2, [&](std::pair<int, int>
A, std::pair<int, int>
B) {
3802 return SortBase(SVI1A,
A,
B);
3807 for (
const auto &Mask : OrigReconstructMasks) {
3808 SmallVector<int> ReconstructMask;
3809 for (
int M : Mask) {
3811 auto It =
find_if(V, [M](
auto A) {
return A.second ==
M; });
3812 assert(It !=
V.end() &&
"Expected all entries in Mask");
3813 return std::distance(
V.begin(), It);
3817 else if (M <
static_cast<int>(NumElts)) {
3818 ReconstructMask.
push_back(FindIndex(V1, M));
3820 ReconstructMask.
push_back(NumElts + FindIndex(V2, M));
3823 ReconstructMasks.
push_back(std::move(ReconstructMask));
3828 SmallVector<int> V1A, V1B, V2A, V2B;
3829 for (
unsigned I = 0;
I < V1.
size();
I++) {
3830 V1A.
push_back(GetBaseMaskValue(SVI0A, V1[
I].first));
3831 V1B.
push_back(GetBaseMaskValue(SVI0B, V1[
I].first));
3833 for (
unsigned I = 0;
I < V2.
size();
I++) {
3834 V2A.
push_back(GetBaseMaskValue(SVI1A, V2[
I].first));
3835 V2B.
push_back(GetBaseMaskValue(SVI1B, V2[
I].first));
3837 while (V1A.
size() < NumElts) {
3841 while (V2A.
size() < NumElts) {
3853 VT, VT, SV->getShuffleMask(),
CostKind);
3860 unsigned ElementSize = VT->getElementType()->getPrimitiveSizeInBits();
3861 unsigned MaxVectorSize =
3863 unsigned MaxElementsInVector = MaxVectorSize / ElementSize;
3864 if (MaxElementsInVector == 0)
3873 std::set<SmallVector<int, 4>> UniqueShuffles;
3878 unsigned NumFullVectors =
Mask.size() / MaxElementsInVector;
3879 if (NumFullVectors < 2)
3880 return C + ShuffleCost;
3881 SmallVector<int, 4> SubShuffle(MaxElementsInVector);
3882 unsigned NumUniqueGroups = 0;
3883 unsigned NumGroups =
Mask.size() / MaxElementsInVector;
3886 for (
unsigned I = 0;
I < NumFullVectors; ++
I) {
3887 for (
unsigned J = 0; J < MaxElementsInVector; ++J)
3888 SubShuffle[J] = Mask[MaxElementsInVector *
I + J];
3889 if (UniqueShuffles.insert(SubShuffle).second)
3890 NumUniqueGroups += 1;
3892 return C + ShuffleCost * NumUniqueGroups / NumGroups;
3898 SmallVector<int, 16>
Mask;
3899 SV->getShuffleMask(Mask);
3900 return AddShuffleMaskAdjustedCost(
C, Mask);
3903 auto AllShufflesHaveSameOperands =
3904 [](SmallPtrSetImpl<Instruction *> &InputShuffles) {
3905 if (InputShuffles.size() < 2)
3907 ShuffleVectorInst *FirstSV =
3914 std::next(InputShuffles.begin()), InputShuffles.end(),
3915 [&](Instruction *
I) {
3916 ShuffleVectorInst *SV = dyn_cast<ShuffleVectorInst>(I);
3917 return SV && SV->getOperand(0) == In0 && SV->getOperand(1) == In1;
3926 CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
3928 if (AllShufflesHaveSameOperands(InputShuffles)) {
3929 UniqueShuffles.clear();
3930 CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
3933 CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
3939 FixedVectorType *Op0SmallVT =
3941 FixedVectorType *Op1SmallVT =
3946 UniqueShuffles.clear();
3947 CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
3949 std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
3951 std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
3954 LLVM_DEBUG(
dbgs() <<
"Found a binop select shuffle pattern: " <<
I <<
"\n");
3956 <<
" vs CostAfter: " << CostAfter <<
"\n");
3957 if (CostBefore < CostAfter ||
3968 if (InputShuffles.contains(SSV))
3970 return SV->getOperand(
Op);
3974 GetShuffleOperand(SVI0A, 1), V1A);
3977 GetShuffleOperand(SVI0B, 1), V1B);
3980 GetShuffleOperand(SVI1A, 1), V2A);
3983 GetShuffleOperand(SVI1B, 1), V2B);
3988 I->copyIRFlags(Op0,
true);
3993 I->copyIRFlags(Op1,
true);
3995 for (
int S = 0,
E = ReconstructMasks.size(); S !=
E; S++) {
3998 replaceValue(*Shuffles[S], *NSV,
false);
4001 Worklist.pushValue(NSV0A);
4002 Worklist.pushValue(NSV0B);
4003 Worklist.pushValue(NSV1A);
4004 Worklist.pushValue(NSV1B);
4014bool VectorCombine::shrinkType(Instruction &
I) {
4015 Value *ZExted, *OtherOperand;
4021 Value *ZExtOperand =
I.getOperand(
I.getOperand(0) == OtherOperand ? 1 : 0);
4025 unsigned BW = SmallTy->getElementType()->getPrimitiveSizeInBits();
4027 if (
I.getOpcode() == Instruction::LShr) {
4044 Instruction::ZExt, BigTy, SmallTy,
4045 TargetTransformInfo::CastContextHint::None,
CostKind);
4050 for (User *U : ZExtOperand->
users()) {
4057 ShrinkCost += ZExtCost;
4072 ShrinkCost += ZExtCost;
4079 Instruction::Trunc, SmallTy, BigTy,
4080 TargetTransformInfo::CastContextHint::None,
CostKind);
4085 if (ShrinkCost > CurrentCost)
4089 Value *Op0 = ZExted;
4092 if (
I.getOperand(0) == OtherOperand)
4099 replaceValue(
I, *NewZExtr);
4105bool VectorCombine::foldInsExtVectorToShuffle(Instruction &
I) {
4106 Value *DstVec, *SrcVec;
4107 uint64_t ExtIdx, InsIdx;
4117 if (!DstVecTy || !SrcVecTy ||
4118 SrcVecTy->getElementType() != DstVecTy->getElementType())
4121 unsigned NumDstElts = DstVecTy->getNumElements();
4122 unsigned NumSrcElts = SrcVecTy->getNumElements();
4123 if (InsIdx >= NumDstElts || ExtIdx >= NumSrcElts || NumDstElts == 1)
4130 bool NeedExpOrNarrow = NumSrcElts != NumDstElts;
4131 bool IsExtIdxInBounds = ExtIdx < NumDstElts;
4133 if (NeedDstSrcSwap) {
4135 if (!IsExtIdxInBounds && NeedExpOrNarrow)
4138 Mask[InsIdx] = ExtIdx;
4142 std::iota(
Mask.begin(),
Mask.end(), 0);
4143 if (!IsExtIdxInBounds && NeedExpOrNarrow)
4144 Mask[InsIdx] = NumDstElts;
4146 Mask[InsIdx] = ExtIdx + NumDstElts;
4159 SmallVector<int> ExtToVecMask;
4160 if (!NeedExpOrNarrow) {
4165 nullptr, {DstVec, SrcVec});
4171 if (IsExtIdxInBounds)
4172 ExtToVecMask[ExtIdx] = ExtIdx;
4174 ExtToVecMask[0] = ExtIdx;
4177 DstVecTy, SrcVecTy, ExtToVecMask,
CostKind);
4181 if (!
Ext->hasOneUse())
4184 LLVM_DEBUG(
dbgs() <<
"Found a insert/extract shuffle-like pair: " <<
I
4185 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
4188 if (OldCost < NewCost)
4191 if (NeedExpOrNarrow) {
4192 if (!NeedDstSrcSwap)
4205 replaceValue(
I, *Shuf);
4214bool VectorCombine::foldInterleaveIntrinsics(Instruction &
I) {
4215 const APInt *SplatVal0, *SplatVal1;
4225 auto *ExtVTy = VectorType::getExtendedElementVectorType(VTy);
4226 unsigned Width = VTy->getElementType()->getIntegerBitWidth();
4235 LLVM_DEBUG(
dbgs() <<
"VC: The cost to cast from " << *ExtVTy <<
" to "
4236 << *
I.getType() <<
" is too high.\n");
4240 APInt NewSplatVal = SplatVal1->
zext(Width * 2);
4241 NewSplatVal <<= Width;
4242 NewSplatVal |= SplatVal0->
zext(Width * 2);
4244 ExtVTy->getElementCount(), ConstantInt::get(
F.getContext(), NewSplatVal));
4252bool VectorCombine::shrinkLoadForShuffles(Instruction &
I) {
4254 if (!OldLoad || !OldLoad->isSimple())
4261 unsigned const OldNumElements = OldLoadTy->getNumElements();
4267 using IndexRange = std::pair<int, int>;
4268 auto GetIndexRangeInShuffles = [&]() -> std::optional<IndexRange> {
4269 IndexRange OutputRange = IndexRange(OldNumElements, -1);
4270 for (llvm::Use &Use :
I.uses()) {
4272 User *Shuffle =
Use.getUser();
4277 return std::nullopt;
4284 for (
int Index : Mask) {
4285 if (Index >= 0 && Index <
static_cast<int>(OldNumElements)) {
4286 OutputRange.first = std::min(Index, OutputRange.first);
4287 OutputRange.second = std::max(Index, OutputRange.second);
4292 if (OutputRange.second < OutputRange.first)
4293 return std::nullopt;
4299 if (std::optional<IndexRange> Indices = GetIndexRangeInShuffles()) {
4300 unsigned const NewNumElements = Indices->second + 1u;
4304 if (NewNumElements < OldNumElements) {
4309 Type *ElemTy = OldLoadTy->getElementType();
4311 Value *PtrOp = OldLoad->getPointerOperand();
4314 Instruction::Load, OldLoad->getType(), OldLoad->getAlign(),
4315 OldLoad->getPointerAddressSpace(),
CostKind);
4318 OldLoad->getPointerAddressSpace(),
CostKind);
4320 using UseEntry = std::pair<ShuffleVectorInst *, std::vector<int>>;
4322 unsigned const MaxIndex = NewNumElements * 2u;
4324 for (llvm::Use &Use :
I.uses()) {
4326 ArrayRef<int> OldMask = Shuffle->getShuffleMask();
4332 for (
int Index : OldMask) {
4333 if (Index >=
static_cast<int>(MaxIndex))
4347 dbgs() <<
"Found a load used only by shufflevector instructions: "
4348 <<
I <<
"\n OldCost: " << OldCost
4349 <<
" vs NewCost: " << NewCost <<
"\n");
4351 if (OldCost < NewCost || !NewCost.
isValid())
4357 NewLoad->copyMetadata(
I);
4360 for (UseEntry &Use : NewUses) {
4361 ShuffleVectorInst *Shuffle =
Use.first;
4362 std::vector<int> &NewMask =
Use.second;
4369 replaceValue(*Shuffle, *NewShuffle,
false);
4382bool VectorCombine::shrinkPhiOfShuffles(Instruction &
I) {
4384 if (!Phi ||
Phi->getNumIncomingValues() != 2u)
4388 ArrayRef<int> Mask0;
4389 ArrayRef<int> Mask1;
4402 auto const InputNumElements = InputVT->getNumElements();
4404 if (InputNumElements >= ResultVT->getNumElements())
4409 SmallVector<int, 16> NewMask;
4412 for (
auto [
M0,
M1] :
zip(Mask0, Mask1)) {
4413 if (
M0 >= 0 &&
M1 >= 0)
4415 else if (
M0 == -1 &&
M1 == -1)
4428 int MaskOffset = NewMask[0
u];
4429 unsigned Index = (InputNumElements - MaskOffset) % InputNumElements;
4432 for (
unsigned I = 0u;
I < InputNumElements; ++
I) {
4446 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
4449 if (NewCost > OldCost)
4461 auto *NewPhi = Builder.
CreatePHI(NewShuf0->getType(), 2u);
4463 NewPhi->addIncoming(
Op,
Phi->getIncomingBlock(1u));
4469 replaceValue(*Phi, *NewShuf1);
4475bool VectorCombine::run() {
4489 auto Opcode =
I.getOpcode();
4497 if (IsFixedVectorType) {
4499 case Instruction::InsertElement:
4500 if (vectorizeLoadInsert(
I))
4503 case Instruction::ShuffleVector:
4504 if (widenSubvectorLoad(
I))
4515 if (scalarizeOpOrCmp(
I))
4517 if (scalarizeLoadExtract(
I))
4519 if (scalarizeExtExtract(
I))
4521 if (scalarizeVPIntrinsic(
I))
4523 if (foldInterleaveIntrinsics(
I))
4527 if (Opcode == Instruction::Store)
4528 if (foldSingleElementStore(
I))
4532 if (TryEarlyFoldsOnly)
4539 if (IsFixedVectorType) {
4541 case Instruction::InsertElement:
4542 if (foldInsExtFNeg(
I))
4544 if (foldInsExtBinop(
I))
4546 if (foldInsExtVectorToShuffle(
I))
4549 case Instruction::ShuffleVector:
4550 if (foldPermuteOfBinops(
I))
4552 if (foldShuffleOfBinops(
I))
4554 if (foldShuffleOfSelects(
I))
4556 if (foldShuffleOfCastops(
I))
4558 if (foldShuffleOfShuffles(
I))
4560 if (foldShuffleOfIntrinsics(
I))
4562 if (foldSelectShuffle(
I))
4564 if (foldShuffleToIdentity(
I))
4567 case Instruction::Load:
4568 if (shrinkLoadForShuffles(
I))
4571 case Instruction::BitCast:
4572 if (foldBitcastShuffle(
I))
4575 case Instruction::And:
4576 case Instruction::Or:
4577 case Instruction::Xor:
4578 if (foldBitOpOfCastops(
I))
4580 if (foldBitOpOfCastConstant(
I))
4583 case Instruction::PHI:
4584 if (shrinkPhiOfShuffles(
I))
4594 case Instruction::Call:
4595 if (foldShuffleFromReductions(
I))
4597 if (foldCastFromReductions(
I))
4600 case Instruction::ExtractElement:
4601 if (foldShuffleChainsToReduce(
I))
4604 case Instruction::ICmp:
4605 case Instruction::FCmp:
4606 if (foldExtractExtract(
I))
4609 case Instruction::Or:
4610 if (foldConcatOfBoolMasks(
I))
4615 if (foldExtractExtract(
I))
4617 if (foldExtractedCmps(
I))
4619 if (foldBinopOfReductions(
I))
4628 bool MadeChange =
false;
4629 for (BasicBlock &BB :
F) {
4641 if (!
I->isDebugOrPseudoInst())
4642 MadeChange |= FoldInst(*
I);
4649 while (!Worklist.isEmpty()) {
4659 MadeChange |= FoldInst(*
I);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< unsigned > MaxInstrsToScan("aggressive-instcombine-max-scan-instrs", cl::init(64), cl::Hidden, cl::desc("Max number of instructions to scan for aggressive instcombine."))
This is the interface for LLVM's primary stateless and local alias analysis.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
FunctionAnalysisManager FAM
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static Value * generateNewInstTree(ArrayRef< InstLane > Item, FixedVectorType *Ty, const SmallPtrSet< Use *, 4 > &IdentityLeafs, const SmallPtrSet< Use *, 4 > &SplatLeafs, const SmallPtrSet< Use *, 4 > &ConcatLeafs, IRBuilderBase &Builder, const TargetTransformInfo *TTI)
static bool isFreeConcat(ArrayRef< InstLane > Item, TTI::TargetCostKind CostKind, const TargetTransformInfo &TTI)
Detect concat of multiple values into a vector.
static void analyzeCostOfVecReduction(const IntrinsicInst &II, TTI::TargetCostKind CostKind, const TargetTransformInfo &TTI, InstructionCost &CostBeforeReduction, InstructionCost &CostAfterReduction)
static SmallVector< InstLane > generateInstLaneVectorFromOperand(ArrayRef< InstLane > Item, int Op)
static Value * createShiftShuffle(Value *Vec, unsigned OldIndex, unsigned NewIndex, IRBuilderBase &Builder)
Create a shuffle that translates (shifts) 1 element from the input vector to a new element location.
static Align computeAlignmentAfterScalarization(Align VectorAlignment, Type *ScalarType, Value *Idx, const DataLayout &DL)
The memory operation on a vector of ScalarType had alignment of VectorAlignment.
static bool feedsIntoVectorReduction(ShuffleVectorInst *SVI)
Returns true if this ShuffleVectorInst eventually feeds into a vector reduction intrinsic (e....
static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx, Instruction *CtxI, AssumptionCache &AC, const DominatorTree &DT)
Check if it is legal to scalarize a memory access to VecTy at index Idx.
static cl::opt< bool > DisableVectorCombine("disable-vector-combine", cl::init(false), cl::Hidden, cl::desc("Disable all vector combine transforms"))
static InstLane lookThroughShuffles(Use *U, int Lane)
static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI)
static const unsigned InvalidIndex
std::pair< Use *, int > InstLane
static Value * translateExtract(ExtractElementInst *ExtElt, unsigned NewIndex, IRBuilderBase &Builder)
Given an extract element instruction with constant index operand, shuffle the source vector (shift th...
static cl::opt< unsigned > MaxInstrsToScan("vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, cl::desc("Max number of instructions to scan for vector combining."))
static cl::opt< bool > DisableBinopExtractShuffle("disable-binop-extract-shuffle", cl::init(false), cl::Hidden, cl::desc("Disable binop extract to shuffle transforms"))
static bool isMemModifiedBetween(BasicBlock::iterator Begin, BasicBlock::iterator End, const MemoryLocation &Loc, AAResults &AA)
static constexpr int Concat[]
A manager for alias analyses.
Class for arbitrary precision integers.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & front() const
front - Get the first element.
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
InstListType::iterator iterator
Instruction iterators...
BinaryOps getOpcode() const
Represents analyses that only rely on functions' control flow.
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
bool isFPPredicate() const
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
This is the shared class of boolean and integer constants.
const APInt & getValue() const
Return the constant as an APInt value reference.
This class represents a range of values.
LLVM_ABI ConstantRange urem(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an unsigned remainder operation of...
LLVM_ABI ConstantRange binaryAnd(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a binary-and of a value in this ra...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
A parsed version of the target data layout string in and methods for querying it.
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static FixedVectorType * getDoubleElementsVectorType(FixedVectorType *VTy)
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LoadInst * CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const char *Name)
LLVM_ABI Value * CreateSelectFMF(Value *C, Value *True, Value *False, FMFSource FMFSource, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr, FMFSource FMFSource={})
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
Value * CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Value * CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
LLVM_ABI Value * CreateNAryOp(unsigned Opc, ArrayRef< Value * > Ops, const Twine &Name="", MDNode *FPMathTag=nullptr)
Create either a UnaryOperator or BinaryOperator depending on Opc.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
PointerType * getPtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateFNegFMF(Value *V, FMFSource FMFSource, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
void push(Instruction *I)
Push the instruction onto the worklist stack.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
An instruction for reading from memory.
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
const SDValue & getOperand(unsigned Num) const
This instruction constructs a fixed permutation of two input vectors.
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
void setAlignment(Align Align)
Analysis pass providing the TargetTransformInfo.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isPointerTy() const
True if this is an instance of PointerType.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
static LLVM_ABI bool isVPBinOp(Intrinsic::ID ID)
std::optional< unsigned > getFunctionalIntrinsicID() const
std::optional< unsigned > getFunctionalOpcode() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI Align getPointerAlignment(const DataLayout &DL) const
Returns an alignment of the pointer value.
unsigned getValueID() const
Return an ID for the concrete type of this object.
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &)
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Abstract Attribute helper functions.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI AttributeSet getFnAttributes(LLVMContext &C, ID id)
Return the function attributes for an intrinsic.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinOpPred_match< LHS, RHS, is_bitwiselogic_op, true > m_c_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations in either order.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
initializer< Ty > init(const Ty &Val)
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
@ User
could "use" a pointer
NodeAddr< PhiNode * > Phi
NodeAddr< UseNode * > Use
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
void stable_sort(R &&Range)
UnaryFunction for_each(R &&Range, UnaryFunction F)
Provide wrappers to std::for_each which take ranges instead of having to pass begin/end explicitly.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
unsigned Log2_64_Ceil(uint64_t Value)
Return the ceil log base 2 of the specified value, 64 if the value is zero.
LLVM_ABI Value * simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q)
Given operand for a UnaryOperator, fold the result or return null.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI unsigned getArithmeticReductionInstruction(Intrinsic::ID RdxID)
Returns the arithmetic instruction opcode used when expanding a reduction.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
LLVM_ABI bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
unsigned M1(unsigned Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isModSet(const ModRefInfo MRI)
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool isSafeToLoadUnconditionally(Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, Instruction *ScanFrom, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if we know that executing a load from this value cannot trap.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI void propagateIRFlags(Value *I, ArrayRef< Value * > VL, Value *OpValue=nullptr, bool IncludeWrapFlags=true)
Get the intersection (logical and) of all of the potential IR flags of each scalar operation (VL) tha...
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
constexpr int PoisonMaskElem
LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
LLVM_ABI void narrowShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Replace each shuffle mask index with the scaled sequential indices for an equivalent mask of narrowed...
LLVM_ABI Intrinsic::ID getReductionForBinop(Instruction::BinaryOps Opc)
Returns the reduction intrinsic id corresponding to the binary operation.
@ And
Bitwise or logical AND of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
unsigned M0(unsigned Val)
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Value * simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a CmpInst, fold the result or return null.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicID(Intrinsic::ID IID)
Returns the llvm.vector.reduce min/max intrinsic that corresponds to the intrinsic op.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
LLVM_ABI AAMDNodes adjustForAccess(unsigned AccessSize)
Create a new AAMDNode for accessing AccessSize bytes of this AAMDNode.
This struct is a compact representation of a valid (non-zero power of two) alignment.
unsigned countMaxActiveBits() const
Returns the maximum number of bits needed to represent all possible unsigned values with these known ...
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.