El componente de canalización TFX de BulkInferrer
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
El componente BulkInferrer TFX realiza inferencia por lotes en datos sin etiquetar. El InferenceResult generado ( tensorflow_serving.apis.prediction_log_pb2.PredictionLog ) contiene las características originales y los resultados de la predicción.
BulkInferrer consume:
- Un modelo entrenado en formato SavedModel .
- Tf sin etiqueta. Ejemplos que contienen características.
- (Opcional) Resultado de la validación del componente Evaluador .
BulkInferrer emite:
Usando el componente BulkInferrer
Se utiliza un componente BulkInferrer TFX para realizar inferencia por lotes en tf.Examples sin etiquetar. Por lo general, se implementa después de un componente Evaluador para realizar inferencia con un modelo validado, o después de un componente Entrenador para realizar inferencia directamente en el modelo exportado.
Actualmente realiza inferencia de modelos en memoria e inferencia remota. La inferencia remota requiere que el modelo esté alojado en Cloud AI Platform.
El código típico se ve así:
bulk_inferrer = BulkInferrer(
examples=examples_gen.outputs['examples'],
model=trainer.outputs['model'],
model_blessing=evaluator.outputs['blessing'],
data_spec=bulk_inferrer_pb2.DataSpec(),
model_spec=bulk_inferrer_pb2.ModelSpec()
)
Más detalles están disponibles en la referencia de la API de BulkInferrer .
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2023-10-31 (UTC)
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Falta la información que necesito","missingTheInformationINeed","thumb-down"],["Muy complicado o demasiados pasos","tooComplicatedTooManySteps","thumb-down"],["Desactualizado","outOfDate","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Problema con las muestras o los códigos","samplesCodeIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2023-10-31 (UTC)"],[],[],null,["# The BulkInferrer TFX Pipeline Component\n\n\u003cbr /\u003e\n\nThe BulkInferrer TFX component performs batch inference on unlabeled data. The\ngenerated\nInferenceResult([tensorflow_serving.apis.prediction_log_pb2.PredictionLog](https://github.com/tensorflow/serving/blob/master/tensorflow_serving/apis/prediction_log.proto))\ncontains the original features and the prediction results.\n\nBulkInferrer consumes:\n\n- A trained model in [SavedModel](https://www.tensorflow.org/guide/saved_model.md) format.\n- Unlabelled tf.Examples that contain features.\n- (Optional) Validation result from [Evaluator](https://www.tensorflow.org/tfx/guide/evaluator.md) component.\n\nBulkInferrer emits:\n\n- [InferenceResult](https://github.com/tensorflow/tfx/blob/master/tfx/types/standard_artifacts.py)\n\nUsing the BulkInferrer Component\n--------------------------------\n\nA BulkInferrer TFX component is used to perform batch inference on unlabeled\ntf.Examples. It is typically deployed after an\n[Evaluator](https://www.tensorflow.org/tfx/guide/evaluator.md) component to\nperform inference with a validated model, or after a\n[Trainer](https://www.tensorflow.org/tfx/guide/trainer.md) component to directly\nperform inference on exported model.\n\nIt currently performs in-memory model inference and remote inference.\nRemote inference requires the model to be hosted on Cloud AI Platform.\n\nTypical code looks like this: \n\n bulk_inferrer = BulkInferrer(\n examples=examples_gen.outputs['examples'],\n model=trainer.outputs['model'],\n model_blessing=evaluator.outputs['blessing'],\n data_spec=bulk_inferrer_pb2.DataSpec(),\n model_spec=bulk_inferrer_pb2.ModelSpec()\n )\n\nMore details are available in the\n[BulkInferrer API reference](https://www.tensorflow.org/tfx/api_docs/python/tfx/v1/components/BulkInferrer)."]]