Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
TFX es una plataforma de extremo a extremo para implementar canalizaciones de producción de AA
Cuando estés listo para que tus modelos pasen de la investigación a la producción, usa TFX para crear y administrar una canalización de producción.
Cómo funciona
Una canalización de TFX es una secuencia de componentes que implementan una canalización de AA, la cual está específicamente diseñada para tareas de aprendizaje automático escalables y de alto rendimiento. Los componentes se compilan con bibliotecas de TFX que también se pueden usar de manera individual.
Intermedio
Entrena y entrega un modelo de TensorFlow con TensorFlow Serving
Esta guía entrena un modelo de red neuronal para que clasifique imágenes de indumentaria, como zapatillas y camisas, guarde el modelo entrenado y después lo entregue con TensorFlow Serving. En lugar de centrarse en el modelado y entrenamiento en TensorFlow, lo hace en TensorFlow Serving.
Intermedio
Crea canalizaciones de TFX alojadas en Google Cloud
Introducción a TFX y a AI Platform Pipelines de Cloud para que crees tus propias canalizaciones de aprendizaje automático en Google Cloud. Sigue un típico proceso de desarrollo de AA: Comienza por el análisis del conjunto de datos y termina con una canalización completa y en funcionamiento.
Intermedio
Usa TFX con TensorFlow Lite para la inferencia en el dispositivo
Aprende cómo TFX puede crear y evaluar modelos de aprendizaje automático que se implementarán en el dispositivo. TFX ahora cuenta con compatibilidad nativa para TFLite, lo que posibilita realizar inferencia de alta eficiencia en los dispositivos móviles.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Falta la información que necesito","missingTheInformationINeed","thumb-down"],["Muy complicado o demasiados pasos","tooComplicatedTooManySteps","thumb-down"],["Desactualizado","outOfDate","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Problema con las muestras o los códigos","samplesCodeIssue","thumb-down"],["Otro","otherDown","thumb-down"]],[],[],[],null,["# TFX | ML Production Pipelines\n\nTFX is an end-to-end platform for deploying production ML pipelines\n===================================================================\n\nWhen you're ready to move your models from research to production, use TFX to create and manage a production pipeline. \n[Run Colab](https://colab.sandbox.google.com/github/tensorflow/tfx/blob/master/docs/tutorials/tfx/penguin_simple.ipynb)\n\n\nGet started by exploring each built-in component of TFX.\n[View tutorials](/tfx/tutorials)\n\n\nLearn how to use TFX with end-to-end examples.\n[View the guide](/tfx/guide)\n\n\nGuides explain the concepts and components of TFX.\n[Explore addons](/tfx/addons)\n\n\nAdditional TFX components contributed by the community. \n\n### How it works\n\nA TFX pipeline is a sequence of components that implement an ML pipeline which is specifically designed for scalable, high-performance machine learning tasks. Components are built using TFX libraries which can also be used individually. \nIngest \\& validate data\n\n*** ** * ** ***\n\nExampleGen\n\n*** ** * ** ***\n\nIngests data into TFX pipelines and optionally splits the input dataset.\n[See guide](http://tensorflow.google.com/tfx/guide/examplegen) \n[ML Metadata](http://tensorflow.google.com/tfx/guide/mlmd) \nStatisticsGen\n\n*** ** * ** ***\n\nGenerates features statistics over both training and serving data.\n[See guide](http://tensorflow.google.com/tfx/guide/statsgen) \nSchemaGen\n\n*** ** * ** ***\n\nCreates schema by inferring types, categories, and ranges from the training data.\n[See guide](http://tensorflow.google.com/tfx/guide/schemagen) \nExampleValidator\n\n*** ** * ** ***\n\nIdentifies anomalies in training and serving data.\n[See guide](http://tensorflow.google.com/tfx/guide/exampleval) \n[TensorFlow Data Validation](http://tensorflow.google.com/tfx/guide/tfdv) \nTrain \\& analyze model\n\n*** ** * ** ***\n\nTransform\n\n*** ** * ** ***\n\nPerforms feature engineering on the dataset.\n[See guide](http://tensorflow.google.com/tfx/guide/transform) \n[TensorFlow Transform](http://tensorflow.google.com/tfx/transform/get_started) \nTuner\n\n*** ** * ** ***\n\nTunes the hyperparameters of the model.\n[See guide](http://tensorflow.google.com/tfx/guide/tuner) \nTrainer\n\n*** ** * ** ***\n\nTrains a TensorFlow model.\n[See guide](http://tensorflow.google.com/tfx/guide/trainer) \n[TensorFlow](http://tensorflow.google.com/tfx/guide/train) \nEvaluator\n\n*** ** * ** ***\n\nPerforms deep analysis of training results and helps validate exported models.\n[See guide](http://tensorflow.google.com/tfx/guide/evaluator) \nInfraValidator\n\n*** ** * ** ***\n\nChecks the model is actually servable from the infrastructure, and prevents bad models from being pushed.\n[See guide](http://tensorflow.google.com/tfx/guide/infra_validator) \n[TensorFlow Model Analysis](http://tensorflow.google.com/tfx/guide/tfma) \nDeploy in production\n\n*** ** * ** ***\n\nPusher\n\n*** ** * ** ***\n\nDeploys the model on a serving infrastructure.\n[See guide](http://tensorflow.google.com/tfx/guide/pusher) \n[TensorFlow Serving, TF Lite \\& TFJS](http://tensorflow.google.com/tfx/guide#deployment_targets) \n\nHow companies are using TFX\n---------------------------\n\n[See case studies](/about/case-studies?filter=TFX) \n[Spotify](https://labs.spotify.com/2020/01/16/for-your-ears-only-personalizing-spotify-home-with-machine-learning/) \n[Airbus](https://blog.tensorflow.org/2020/04/how-airbus-detects-anomalies-iss-telemetry-data-tfx.html) \n[Gmail](https://security.googleblog.com/2020/02/improving-malicious-document-detection.html) \n[OpenX](https://blog.tensorflow.org/2021/02/how-openx-trains-and-serves-for-million-queries-per-second.html) \n\nSolutions to common problems\n----------------------------\n\nExplore step-by-step tutorials to help you with your projects. \nIntermediate\n[Train and serve a TensorFlow model with TensorFlow Serving](/tfx/tutorials/serving/rest_simple) \nThis guide trains a neural network model to classify images of clothing, like sneakers and shirts, saves the trained model, and then serves it with TensorFlow Serving. The focus is on TensorFlow Serving, rather than the modeling and training in TensorFlow. \nIntermediate\n[Create TFX pipelines hosted on Google Cloud](/tfx/tutorials/tfx/cloud-ai-platform-pipelines) \nAn introduction to TFX and Cloud AI Platform Pipelines to create your own machine learning pipelines on Google Cloud. Follow a typical ML development process, starting by examining the dataset, and ending up with a complete working pipeline. \nIntermediate\n[Use TFX with TensorFlow Lite for on-device inference](/tfx/tutorials/tfx/tfx_for_mobile) \nLearn how TFX can create and evaluate machine learning models that will be deployed on-device. TFX now provides native support for TFLite, which makes it possible to perform highly efficient inference on mobile devices. \n\nNews \\& announcements\n---------------------\n\nCheck out our [blog](https://blog.tensorflow.org/search?label=TFX&max-results=20) and [YouTube playlist](https://goo.gle/tfx-youtube) for additional TFX content, \nand subscribe to our TensorFlow newsletter to get the \nlatest announcements sent directly to your inbox. \n[Sign up](/subscribe) \n\nCommunity participation\n-----------------------\n\nSee more ways to participate in the TensorFlow community. \n[Community](/community) \n[TFX on GitHub](https://github.com/tensorflow/tfx) \n[ML Metadata](https://github.com/google/ml-metadata) [TensorFlow Data Validation](https://github.com/tensorflow/data-validation) [TensorFlow Transform](https://github.com/tensorflow/transform) [TensorFlow Model Analysis](https://github.com/tensorflow/model-analysis) [TensorFlow Serving](https://github.com/tensorflow/serving) \n[Stack Overflow](https://stackoverflow.com/questions/tagged/tfx) \n[ML Metadata](https://stackoverflow.com/questions/tagged/mlmd) [TensorFlow Data Validation](https://stackoverflow.com/questions/tagged/tensorflow-data-validation) [TensorFlow Transform](https://stackoverflow.com/questions/tagged/tensorflow-transform) [TensorFlow Model Analysis](https://stackoverflow.com/questions/tagged/tensorflow-model-analysis) [TensorFlow Serving](https://stackoverflow.com/questions/tagged/tensorflow-serving) \n[Issues, bug reports, and feature requests](https://github.com/tensorflow/tfx/issues) \n[ML Metadata](https://github.com/google/ml-metadata/issues) [TensorFlow Data Validation](https://github.com/tensorflow/data-validation/issues) [TensorFlow Transform](https://github.com/tensorflow/transform/issues) [TensorFlow Model Analysis](https://github.com/tensorflow/model-analysis/issues) [TensorFlow Serving](https://github.com/tensorflow/serving/issues) \n[Ask a question on TensorFlow Forum](https://discuss.tensorflow.org/tag/tfx) \n[Join the TFX-Addons Special Interest Group](https://github.com/tensorflow/tfx-addons) \n[Explore Dev Library community projects](https://devlibrary.withgoogle.com/products/ml) \n\nGet started with TFX\n--------------------\n\n[Explore tutorials](/tfx/tutorials)"]]