āϏā§āĻ āĻāϰāĻž āĻĒā§āώā§āĻ āĻž āĻā§āĻāĻŋā§ā§ āϰāĻžāĻāϤ⧠'āϏāĻāĻā§āϰāĻš' āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§āύ
āĻāĻĒāύāĻžāϰ āĻĒāĻāύā§āĻĻ āĻ
āύā§āϝāĻžā§ā§ āĻāύā§āĻā§āύā§āĻ āϏā§āĻ āĻāϰā§āύ āĻ āϏāĻ āĻŋāĻ āĻŦāĻŋāĻāĻžāĻā§ āϰāĻžāĻā§āύāĨ¤
āĻā§āϞāϏ
TensorFlow āĻāϝāĻŧāĻžāϰā§āĻāĻĢā§āϞā§āĻā§ āϏāĻŽāϰā§āĻĨāύ āĻāĻŦāĻ āϤā§āĻŦāϰāĻžāύā§āĻŦāĻŋāϤ āĻāϰāĻžāϰ āĻāύā§āϝ āϏāϰāĻā§āĻāĻžāĻŽāĻā§āϞāĻŋ āĻ
āύā§āĻŦā§āώāĻŖ āĻāϰā§āύāĨ¤
āĻā§āϞāĻžāĻŦ Colaboratory āĻšāϞ āĻāĻāĻāĻŋ āĻŦāĻŋāύāĻžāĻŽā§āϞā§āϝā§āϰ Jupyter āύā§āĻāĻŦā§āĻ āĻĒāϰāĻŋāĻŦā§āĻļ āϝāĻžāϰ āĻā§āύ⧠āϏā§āĻāĻāĻĒā§āϰ āĻĒā§āϰāϝāĻŧā§āĻāύ āύā§āĻ āĻāĻŦāĻ āĻāĻāĻŋ āϏāĻŽā§āĻĒā§āϰā§āĻŖāϰā§āĻĒā§ āĻā§āϞāĻžāĻāĻĄā§ āĻāϞā§, āϝāĻž āĻāĻĒāύāĻžāĻā§ āĻāĻ āĻā§āϞāĻŋāĻā§ āĻāĻĒāύāĻžāϰ āĻŦā§āϰāĻžāĻāĻāĻžāϰ⧠TensorFlow āĻā§āĻĄ āĻāĻžāϞāĻžāύā§āϰ āĻ
āύā§āĻŽāϤāĻŋ āĻĻā§āϝāĻŧāĨ¤
āĻāĻŋāĻā§āϝā§āϝāĻŧāĻžāϞ āĻŦā§āϞāĻ I/O āĻĄāĻŋāĻāĻžāĻāϏ, āĻŽāĻĄā§āϞ, āĻĄā§āĻāĻž āĻ
āĻāĻŽā§āύā§āĻā§āĻļāύ, āĻāĻŽāύāĻāĻŋ Colab āĻā§āĻĄāĻā§ āĻĒā§āύāϰāĻžāϝāĻŧ āĻŦā§āϝāĻŦāĻšāĻžāϰāϝā§āĻā§āϝ āĻŦāĻŋāϞā§āĻĄāĻŋāĻ āĻŦā§āϞāĻ āĻšāĻŋāϏā§āĻŦā§ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠ML āĻāϝāĻŧāĻžāϰā§āĻāĻĢā§āϞ⧠āĻĒā§āϰā§āĻā§āĻāĻžāĻāĻĒ āĻāϰāĻžāϰ āĻāύā§āϝ āĻāĻāĻāĻŋ āĻāĻŋāĻā§āϝā§āϝāĻŧāĻžāϞ āĻā§āĻĄāĻŋāĻ āĻāϝāĻŧā§āĻŦ āĻĢā§āϰā§āĻŽāĻāϝāĻŧāĻžāϰā§āĻāĨ¤
āĻā§āύāϏāϰāĻŦā§āϰā§āĻĄ āĻā§āύāϏāϰāĻĢā§āϞ⧠āĻĒā§āϰā§āĻā§āϰāĻžāĻŽāĻā§āϞāĻŋ āĻŦā§āĻāĻž, āĻĄāĻŋāĻŦāĻžāĻ āĻāĻŦāĻ āĻ
āĻĒā§āĻāĻŋāĻŽāĻžāĻāĻ āĻāϰāĻžāϰ āĻāύā§āϝ āĻāĻŋāĻā§āϝā§āϝāĻŧāĻžāϞāĻžāĻāĻā§āĻļāύ āĻā§āϞāĻā§āϞāĻŋāϰ āĻāĻāĻāĻŋ āϏā§āϝā§āĻ⧎
āĻāĻŋ-āĻāĻĢ āĻā§āϞ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻŽāĻĄā§āϞā§āϰ āĻā§āĻĄ-āĻŽā§āĻā§āϤ āĻ
āύā§āϏāύā§āϧāĻžāύā§āϰ āĻāύā§āϝ āĻāĻāĻāĻŋ āĻā§āϞ, āĻŽāĻĄā§āϞ āĻŦā§āĻāĻžāϰ, āĻĄāĻŋāĻŦāĻžāĻāĻŋāĻ āĻāĻŦāĻ āύā§āϝāĻžāϝā§āϝāϤāĻžāϰ āĻāύā§āϝ āĻĻāϰāĻāĻžāϰā§āĨ¤ TensorBoard āĻāĻŦāĻ jupyter āĻŦāĻž colab āύā§āĻāĻŦā§āĻā§ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧāĨ¤
āĻāĻŽāĻāϞ āĻĒāĻžāϰāĻĢ āĻāĻŽāĻāϞ āϏāĻĢā§āĻāĻāϝāĻŧā§āϝāĻžāϰ āĻĢā§āϰā§āĻŽāĻāϝāĻŧāĻžāϰā§āĻ, āĻāĻŽāĻāϞ āĻšāĻžāϰā§āĻĄāĻāϝāĻŧā§āϝāĻžāϰ āĻāĻā§āϏāĻŋāϞāĻžāϰā§āĻāϰ āĻāĻŦāĻ āĻāĻŽāĻāϞ āĻā§āϞāĻžāĻāĻĄ āĻĒā§āϞā§āϝāĻžāĻāĻĢāϰā§āĻŽā§āϰ āĻāĻžāϰā§āϝāĻā§āώāĻŽāϤāĻž āĻĒāϰāĻŋāĻŽāĻžāĻĒā§āϰ āĻāύā§āϝ āĻāĻāĻāĻŋ āĻŦāĻŋāϏā§āϤā§āϤ āĻāĻŽāĻāϞ āĻŦā§āĻā§āĻāĻŽāĻžāϰā§āĻ āϏā§āϝā§āĻāĨ¤
āĻāĻā§āϏāĻāϞāĻ XLA (āĻ
ā§āϝāĻžāĻā§āϏāĻŋāϞāĻžāϰā§āĻā§āĻĄ āϞāĻŋāύāĻŋāϝāĻŧāĻžāϰ āĻ
ā§āϝāĻžāϞāĻā§āĻŦā§āϰāĻž) āĻšāϞ āϞāĻŋāύāĻŋāϝāĻŧāĻžāϰ āĻ
ā§āϝāĻžāϞāĻā§āĻŦāϰāĻžāϰ āĻāύā§āϝ āĻāĻāĻāĻŋ āĻĄā§āĻŽā§āύ-āύāĻŋāϰā§āĻĻāĻŋāώā§āĻ āĻāĻŽā§āĻĒāĻžāĻāϞāĻžāϰ āϝāĻž āĻā§āύāϏāϰāĻĢā§āϞ⧠āĻāĻŖāύāĻžāĻā§ āĻ
āĻĒā§āĻāĻŋāĻŽāĻžāĻāĻ āĻāϰā§āĨ¤ āĻĢāϞāĻžāĻĢāϞāĻā§āϞāĻŋ āĻšāϞ āĻāϤāĻŋ, āĻŽā§āĻŽāϰāĻŋ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāĻŦāĻ āϏāĻžāϰā§āĻāĻžāϰ āĻāĻŦāĻ āĻŽā§āĻŦāĻžāĻāϞ āĻĒā§āϞā§āϝāĻžāĻāĻĢāϰā§āĻŽā§ āĻŦāĻšāύāϝā§āĻā§āϝāϤāĻžāϰ āĻāύā§āύāϤāĻŋāĨ¤
āĻā§āύāϏāϰāĻĢā§āϞ⧠āĻā§āϞāĻžāϰ āĻŽāĻžāĻ āĻāĻĒāύāĻžāϰ āĻŦā§āϰāĻžāĻāĻāĻžāϰ⧠āĻāĻāĻāĻŋ āύāĻŋāĻāϰāĻžāϞ āύā§āĻāĻāϝāĻŧāĻžāϰā§āĻā§āϰ āϏāĻžāĻĨā§ āĻāĻŋāĻā§āĻāĻžāϰ āĻāϰā§āύāĨ¤ āĻāĻŋāύā§āϤāĻž āĻāϰāĻŦā§āύ āύāĻž, āĻāĻĒāύāĻŋ āĻāĻāĻŋ āĻāĻžāĻāϤ⧠āĻĒāĻžāϰāĻŦā§āύ āύāĻžāĨ¤
TPU āĻāĻŦā§āώāĻŖāĻž āĻŽā§āĻ āĻāĻŋāĻĒāĻŋāĻāĻ āϰāĻŋāϏāĻžāϰā§āĻ āĻā§āϞāĻžāĻāĻĄ (āĻāĻŋāĻāϰāϏāĻŋ) āĻĒā§āϰā§āĻā§āϰāĻžāĻŽ āĻāĻŦā§āώāĻāĻĻā§āϰ 1,000 āĻāĻŋāϰāĻ āĻŦā§āĻļāĻŋ āĻā§āϞāĻžāĻāĻĄ āĻāĻŋāĻĒāĻŋāĻāĻ-āĻāϰ āĻā§āϞāĻžāϏā§āĻāĻžāϰ⧠āĻ
ā§āϝāĻžāĻā§āϏā§āϏā§āϰ āĻāύā§āϝ āĻāĻŦā§āĻĻāύ āĻāϰāϤ⧠āϏāĻā§āώāĻŽ āĻāϰ⧠āϝāĻžāϤ⧠āϤāĻžāϰāĻž āĻāĻŦā§āώāĻŖāĻžāϰ āĻ
āĻā§āϰāĻāϤāĻŋāϰ āĻĒāϰāĻŦāϰā§āϤ⧠āϤāϰāĻā§āĻāĻā§ āϤā§āĻŦāϰāĻžāύā§āĻŦāĻŋāϤ āĻāϰāϤ⧠āϏāĻšāĻžāϝāĻŧāϤāĻž āĻāϰā§āĨ¤
āĻāĻŽāĻāϞāĻāĻāĻāϰ āĻāĻāĻāĻŋ āύāϤā§āύ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻāĻĒāϏā§āĻĨāĻžāĻĒāύāĻž āĻāĻŦāĻ āĻāĻŽā§āĻĒāĻžāĻāϞāĻžāϰ āĻāĻžāĻ āĻžāĻŽā§āĨ¤
[[["āϏāĻšāĻā§ āĻŦā§āĻāĻž āϝāĻžā§","easyToUnderstand","thumb-up"],["āĻāĻŽāĻžāϰ āϏāĻŽāϏā§āϝāĻžāϰ āϏāĻŽāĻžāϧāĻžāύ āĻšā§ā§āĻā§","solvedMyProblem","thumb-up"],["āĻ
āύā§āϝāĻžāύā§āϝ","otherUp","thumb-up"]],[["āĻāϤ⧠āĻāĻŽāĻžāϰ āĻĒā§āϰā§ā§āĻāύā§ā§ āϤāĻĨā§āϝ āύā§āĻ","missingTheInformationINeed","thumb-down"],["āĻā§āĻŦ āĻāĻāĻŋāϞ / āĻ
āύā§āĻ āϧāĻžāĻĒ","tooComplicatedTooManySteps","thumb-down"],["āĻĒā§āϰāύā§","outOfDate","thumb-down"],["āĻ
āύā§āĻŦāĻžāĻĻ āϏāĻāĻā§āϰāĻžāύā§āϤ āϏāĻŽāϏā§āϝāĻž","translationIssue","thumb-down"],["āύāĻŽā§āύāĻž / āĻā§āĻĄ āϏāĻāĻā§āϰāĻžāύā§āϤ āϏāĻŽāϏā§āϝāĻž","samplesCodeIssue","thumb-down"],["āĻ
āύā§āϝāĻžāύā§āϝ","otherDown","thumb-down"]],[],[],[],null,["# Tools\n=====\n\nExplore tools to support and accelerate TensorFlow workflows. \n[Colab](https://colab.sandbox.google.com/notebooks/welcome.ipynb) \nColaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud, allowing you to execute TensorFlow code in your browser with a single click. \n[Learn more](https://colab.sandbox.google.com/notebooks/welcome.ipynb) \n[Visual Blocks](https://visualblocks.withgoogle.com/) \nA visual coding web framework to prototype ML workflows using I/O devices, models, data augmentation, and even Colab code as reusable building blocks. \n[Learn more](https://visualblocks.withgoogle.com/) \n[TensorBoard](/tensorboard) \nA suite of visualization tools to understand, debug, and optimize TensorFlow programs. \n[Learn more](/tensorboard) [View code](https://github.com/tensorflow/tensorboard) \n[What-If Tool](https://pair-code.github.io/what-if-tool/) \nA tool for code-free probing of machine learning models, useful for model understanding, debugging, and fairness. Available in TensorBoard and jupyter or colab notebooks. \n[Learn more](https://pair-code.github.io/what-if-tool/) [Get started](https://colab.research.google.com/github/PAIR-code/what-if-tool/blob/master/What_If_Tool_Notebook_Usage.ipynb) \n[ML Perf](https://mlperf.org/) \nA broad ML benchmark suite for measuring performance of ML software frameworks, ML hardware accelerators, and ML cloud platforms. \n[Learn more](https://mlperf.org/) \n[XLA](/xla) \nXLA (Accelerated Linear Algebra) is a domain-specific compiler for linear algebra that optimizes TensorFlow computations. The results are improvements in speed, memory usage, and portability on server and mobile platforms. \n[Learn more](/xla) \n[TensorFlow Playground](https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circleÂŽDataset=reg-plane&learningRate=0.03ÂŽularizationRate=0&noise=0&networkShape=4,2&seed=0.04620&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false) \nTinker with a neural network in your browser. Don't worry, you can't break it. \n[Learn more](https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circleÂŽDataset=reg-plane&learningRate=0.03ÂŽularizationRate=0&noise=0&networkShape=4,2&seed=0.04620&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false) \n[TPU Research Cloud](https://sites.research.google/trc/) \nThe TPU Research Cloud (TRC) program enables researchers to apply for access to a cluster of more than 1,000 Cloud TPUs at no charge to help them accelerate the next wave of research breakthroughs. \n[Learn more](https://sites.research.google/trc/) \n[MLIR](/mlir) \nA new intermediate representation and compiler framework. \n[Learn more](/mlir) \n\nExplore libraries that build advanced models, methods, and extensions using TensorFlow\n--------------------------------------------------------------------------------------\n\n[See libraries](/resources/libraries-extensions)"]]